Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{59-x}{41}+\dfrac{57-x}{43}+\dfrac{55-x}{45}+\dfrac{53-x}{47}+\dfrac{51-x}{49}=-5\)
\(\Rightarrow\dfrac{59-x}{41}+1+\dfrac{57-x}{43}+1+\dfrac{55-x}{45}+1+\dfrac{53-x}{47}+1+\dfrac{51-x}{49}+1=0\)\(\Rightarrow\dfrac{100-x}{41}+\dfrac{100-x}{43}+\dfrac{100-x}{45}+\dfrac{100-x}{47}+\dfrac{100-x}{49}=0\)
\(\Rightarrow\left(100-x\right)\left(\dfrac{1}{41}+\dfrac{1}{43}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{49}\right)=0\)
\(\Rightarrow100-x=0\Rightarrow x=100\)
\(\dfrac{72-x}{7}=\dfrac{x-4}{9}\)
\(\Rightarrow9\left(72-x\right)=7\left(x-4\right)\)
\(\Rightarrow648-9x=2x-28\)
\(\Rightarrow11x-28=648\)
\(\Rightarrow11x=676\Rightarrow x=\dfrac{676}{11}\)
\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)
\(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)
\(\Rightarrow259-7x=3x+39\)
\(\Rightarrow10x+39=259\)
\(\Rightarrow10x=220\Rightarrow x=22\)
\(\dfrac{x+4}{20}=\dfrac{5}{x+4}\)
\(\Rightarrow\left(x+4\right)^2=100\)
\(\Rightarrow\left(x+4\right)^2=\pm10^2\)
\(\Rightarrow\left[{}\begin{matrix}x+4=10\Rightarrow x=6\\x+4=-10\Rightarrow x=-14\end{matrix}\right.\)
\(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow x\left(x+3\right)-1\left(x+3\right)=x\left(x+2\right)-2\left(x+2\right)\)
\(\Rightarrow x^2+3x-x-3=x^2+2x-2x-4\)
\(\Rightarrow x^2+2x-3=x^2-4\)
\(\Rightarrow2x-3=-4\)
\(\Rightarrow2x=-1\)
\(\Rightarrow x=-\dfrac{1}{2}\)
a) \(\dfrac{12}{\left(-2\right)^n}=\dfrac{-12}{8}\)
\(\Rightarrow12.8=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow96=\left(-2\right)^n.\left(-12\right)\)
\(\Rightarrow\left(-2\right)^n=\dfrac{96}{-12}\)
\(\Rightarrow\left(-2\right)^n=-8\)
\(\Rightarrow\left(-2\right)^n=\left(-2\right)^3\)
\(\Rightarrow n=3\)
Vậy \(n=3\)
2)
a) \(\dfrac{4}{9}\) và \(\dfrac{5}{8}\) Mẫu chung: 72
\(\dfrac{4}{9}=\dfrac{4.8}{72}=\dfrac{32}{72}\)
\(\dfrac{5}{8}=\dfrac{5.9}{72}=\dfrac{45}{72}\)
Vì \(\dfrac{32}{72}< \dfrac{45}{72}\)
Vậy \(\dfrac{4}{9}< \dfrac{5}{8}\)
b) \(-\sqrt{\dfrac{4}{9}}\) và \(\dfrac{-3}{4}\) MTC: 12
\(-\sqrt{\dfrac{4}{9}}=-\sqrt{\left(\dfrac{2}{3}\right)^2}=-\dfrac{2}{3}=\dfrac{-2.4}{12}=\dfrac{-8}{12}\)
\(-\dfrac{3}{4}=\dfrac{-3.3}{12}=\dfrac{-9}{12}\)
Vì \(\dfrac{-8}{12}>\dfrac{-9}{12}\)
Vậy \(-\sqrt{\dfrac{4}{9}}>\dfrac{-3}{4}\)
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
a,|x2−13x2−13| = 3232
b, 32−1232−12 ( 2x-1)=3434
c, |x-1|+2x=2
a)\(\left|\dfrac{x}{2}-\dfrac{1}{3}\right|=\dfrac{3}{2}\)
TH1
\(\dfrac{x}{2}-\dfrac{1}{3}=\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=\dfrac{11}{6}\)
=>x=\(\dfrac{11.2}{6}\)
=>x=\(\dfrac{11}{3}\)
TH2
\(\dfrac{x}{2}-\dfrac{1}{2}=-\dfrac{3}{2}\)
=>\(\dfrac{x}{2}=-\dfrac{3}{2}+\dfrac{1}{2}\)
=>\(\dfrac{x}{2}=-1\)
=>x=-2
ta xét trường hợp: -4:(-x)=-9:(-x) với x<0 (theo đề bài)
ta lắp một số bất kì: -4:(-2)=-9:(-2) => -2=-9:2 (VÔ LÍ)
=>x không thể thỏa mãn được đề bài
kết luận: x thuộc tập hợp rỗng
a)
ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)
Vậy TXĐ của $x$ là \(D= [0;+\infty)\)
b)
ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)
c)
ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)
Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)
d)
ĐK:
\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)
Vậy TXĐ \(D=\mathbb{R}\)
e)
ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)
f)
ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)
Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)
\(9^{x-1}=\dfrac{1}{9}\)
\(\Rightarrow9^{x-1}=9^{-1}\)
\(\Rightarrow x-1=-1\)
\(\Rightarrow x=-1+1=0\)
Vậy x = 0
c. \(\dfrac{x+2}{-20}=\dfrac{-5}{x+2}\)
\(\Rightarrow\) x +2 . x + 2 = -5 . (- 20)
\(\left(x+2^{ }\right)^2\) = 100
\(\left(x+2^{ }\right)^2\) =\(10^2\)
\(\Rightarrow\) x + 2 = 10
x = 10 - 2
x = 8
Vậy x = 8
(Tick mk nha !!!)
d.-10+ (2x + 5)3 =17
(2x +5)3 =17-(-10)
(2x +5)3 =27
(2x +5)3 =33
suy ra 2x +5 =3
2x =3-5
2x =-2
x =-2/2=-1
ko có dấu suy ra
\(x=\dfrac{0,13.42}{9}=\dfrac{91}{150}\)
`(0,13)/x = 9/42`
`(0,13)/x=3/14`
`0,13 . 14 = 3.x`
`0,52=3x`
`x=13/75`