\(\dfrac{-3}{x+2}< \dfrac{2}{3-x}\)

Giúp mk với

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

\(\dfrac{-3}{x+2}< \dfrac{2}{3-x}\) Dk ( x ≠ -2 ; x ≠ 3)

MTC : (x + 2) (3 - x)

\(\Leftrightarrow\dfrac{-3\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}< \dfrac{2\left(x+2\right)}{\left(x+2\right)\left(3-x\right)}\)

\(\Leftrightarrow\) -3(3 - x) < 2(x + 2)

\(\Leftrightarrow\) -9 + 3x < 2x + 4

\(\Leftrightarrow\) 3x - 2x < 4 + 9

\(\Leftrightarrow\) x < 13

 Vay x < 13

 Chuc ban hoc tot

Ta có: \(\dfrac{-3}{x+2}< \dfrac{2}{3-x}\)

\(\Leftrightarrow\dfrac{-3}{x+2}-\dfrac{2}{3-x}< 0\)

\(\Leftrightarrow\dfrac{-3}{x+2}+\dfrac{2}{x-3}< 0\)

\(\Leftrightarrow\dfrac{-3\left(x-3\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}< 0\)

\(\Leftrightarrow\dfrac{-3x+9+2x+4}{\left(x+2\right)\left(x-3\right)}< 0\)

\(\Leftrightarrow\dfrac{-x+13}{\left(x+2\right)\left(x-3\right)}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>13\\-2< x< 3\end{matrix}\right.\)

\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\cdot\left(\dfrac{x}{\left(x-1\right)^2}-\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=-\dfrac{x^2}{x-1}+\dfrac{x\left(x-1\right)}{x^2-x+1}\cdot\dfrac{x^2+x-x+1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x^2+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-x^2}{x-1}+\dfrac{x\left(x^2+1\right)}{x^3+1}\)

\(=\dfrac{-x^5-x^2+\left(x^2-x\right)\left(x^2+1\right)}{\left(x^3+1\right)\left(x-1\right)}\)

\(=\dfrac{-x^5-x^2+x^4+x^2-x^3-x}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{-x^5+x^4-x^3-x}{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}\)

 

7 tháng 1 2018

mn ơi đề bài là rút gọn phân thức.Mk cần gấp

14 tháng 1 2019

a) \(\frac{6-x}{3}-\frac{x}{4}=\frac{3+2x}{2}-1\)

\(\frac{4\left(6-x\right)}{12}-\frac{3x}{12}=\frac{3+2x}{2}-\frac{2}{2}\)

\(\frac{24-4x-3x}{12}=\frac{3+2x-2}{2}\)

\(\frac{24-7x}{12}=\frac{2x+1}{2}\)

\(\Rightarrow2\left(24-7x\right)=12\left(2x+1\right)\)

\(\Rightarrow48-14x=24x+12\)

\(\Rightarrow24x+14x=48-12\)

\(\Rightarrow38x=36\)

\(\Rightarrow x=\frac{18}{19}\)

14 tháng 1 2019

b) \(-7x-\frac{x-3}{5}-\frac{x}{2}=x+\frac{2x+1}{3}\)

\(\frac{-70x}{10}-\frac{2\left(x-3\right)}{10}-\frac{5x}{10}=\frac{3x}{3}+\frac{2x+1}{3}\)

\(\frac{-70x-2x+6-5x}{10}=\frac{3x+2x+1}{3}\)

\(\frac{-77x+6}{10}=\frac{5x+1}{3}\)

\(\Rightarrow3\left(-77x+6\right)=10\left(5x+1\right)\)

\(\Leftrightarrow-231x+18=50x+10\)

\(\Leftrightarrow50x+231x=18-10\)

\(\Leftrightarrow281x=8\)

\(\Leftrightarrow x=\frac{8}{281}\)

Mấy câu kia tương tự

26 tháng 4 2018

a)

A = \(\left(\dfrac{3-x}{x+3}.\dfrac{x^2+6x+9}{x^2-9}+\dfrac{x}{x+3}\right):\dfrac{3x^2}{x+3}\)

=\(\left(\dfrac{3-x}{x+3}.\dfrac{\left(x+3\right)^2}{\left(x+3\right)\left(x-3\right)}+\dfrac{x}{x+3}\right):\dfrac{3x^3}{x+3}\) (đkxđ: x \(\ne\)\(\pm\)3)

= \(\left(\dfrac{x}{x+3}-1\right).\dfrac{x+3}{3x^2}\)

= \(\dfrac{x-x-3}{x+3}.\dfrac{x+3}{3x^2}\)

= -x2

b) Thay x = \(\dfrac{1}{2}\) vào A, ta có:

A = -\(\left(\dfrac{1}{2}\right)^2\)

= -\(\dfrac{1}{4}\)

c) Để A < 0 thì -x2 < 0

mà -x2 \(\le\) 0 \(\forall\)x

\(\Rightarrow\) Với mọi x (x\(\ne\)0) thì A < 0

26 tháng 4 2018
https://i.imgur.com/vjvg28G.jpg
19 tháng 5 2017

\(\dfrac{x^2-5}{x^3+1}+\dfrac{\left(x+1\right)\cdot\left(x+2\right)}{x^3+1}+\dfrac{x^2-x+x}{x^3+1}\)

=\(\dfrac{x^2-5+\left(x+1\right)\cdot\left(x+2\right)+x^2-x+1}{x^3+1}\)

=\(\dfrac{x^2-5+x^2+2\cdot x+x+2+x^2-x+1}{x^3+1}\)

=\(\dfrac{3\cdot x^2+2\cdot x-2}{x^3+1}\)

mình cx ko bt còn rút gọn nữa hay ko đâu ak

a: \(x< -9:\dfrac{3}{2}=-9\cdot\dfrac{2}{3}=-6\)

b: 2/3x>-2

hay x>-2:2/3=-3

c: \(2x>\dfrac{9}{5}-\dfrac{4}{5}=1\)

hay x>1/2

d: \(\Leftrightarrow x\cdot\dfrac{3}{5}>6-4=2\)

hay x>2:3/5=2x5/3=10/3

Câu 3: 

\(\Leftrightarrow3x^3-2x^2+6x^2-4x+9x-6>0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2+2x+3\right)>0\)

=>3x-2>0

=>x>2/3

Câu 1: 

a: \(A=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{x+1+2x-2}{\left(x^2-1\right)}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\left(\dfrac{3x-1}{x^2-1}-\dfrac{3}{x}\right)\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{3x^2-x-3x^2+3}{x\left(x^2-1\right)}\cdot\dfrac{x^2-1}{x+2}\)

\(=x-2+\dfrac{6x-3}{x\left(x+2\right)}+\dfrac{-\left(x-3\right)}{x\left(x+2\right)}\)

\(=x-2+\dfrac{6x-3-x^2+3x}{x\left(x+2\right)}\)

\(=x-2+\dfrac{-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x^2-4\right)-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-4x-x^2+9x-3}{x\left(x+2\right)}\)

\(=\dfrac{x^3-x^2+5x-3}{x\left(x+2\right)}\)

b: TH1: \(\left\{{}\begin{matrix}x^3-x^2+5x-3>0\\x\left(x+2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2< x< 2\\x>0.63\end{matrix}\right.\Leftrightarrow0.63< x< 2\)

TH2: \(\left\{{}\begin{matrix}x^3-x^2+5x-3< 0\\x\left(x+2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0.63\\\left[{}\begin{matrix}x>0\\x< -2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}0< x< 0.63\\x< -2\end{matrix}\right.\)

18 tháng 3 2018

Liên hệ giữa thứ tự và phép cộng

10 tháng 2 2018

d. ĐKXĐ: x khác 1, x khác 3

\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)

\(\Leftrightarrow2x-15+1+8=0\)

\(\Leftrightarrow2x-6=0\)

\(\Leftrightarrow x=3\) (loại)

Vậy pt vô nghiệm