\(\dfrac{ }{ }\)1/2.4 +1/4.6+1/[(2.x-2).2.x] =1/8 (x∈N, x≥2)

Giúp mình nghen

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018

A= (-1).1/2.4+1/4.6+...+1/(2x-2).2x

2A=(-2).1/2.4+2/4.6+...+2/(2x-2).2x

2A=(-2).1/8+1/4-1/6+1/6-1/8...+1/(2x-2)-1/2x

2A=-1/4+1/4-1/2x=-1/2x

A=-1/2x :2=1/8

-1/4x=1/8

1/(-4)x=1/8

(-4)x=8

x=-2

29 tháng 4 2018

Ủa A ở đâu ra vậy?

4 tháng 5 2018

\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right)2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right)2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{-1}{2x}=\dfrac{-1}{4}\)

\(\Rightarrow x=2\)

4 tháng 5 2018

Ta có: \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\Rightarrow\dfrac{1}{2}.\dfrac{x-1}{2x}=\dfrac{1}{8}\Rightarrow\dfrac{x-1}{4x}=\dfrac{1}{8}\)

\(\Rightarrow8\left(x-1\right)=4x\Rightarrow8x-8=4x\Rightarrow4x=8\Rightarrow x=2\)

10 tháng 5 2018

Cần gấp, mai thi

10 tháng 5 2018

mình ko biết mình làm đúng hay sai bạn nhé, mong mọi người góp ý

= 1/2.( 1/2.4+1/4.6+....+1/(2x-2)2x)=1/8

= 1/2.(1/2-1/4+1/4-1/6+....+1/(2x-2)-1/2x)=1/8

= 1/2.( 1/2-1/2x)=1/8

( 1/2-1/2x)=1/8:1/2

1/2-1/2x=1/4

1/2x =1/2-1/4

1/2x =1/4

2x = 4

x =4:2

x =2

4 tháng 5 2018

\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right)2x}=\dfrac{11}{24}\)

\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right)2x}=\dfrac{11}{24}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{11}{24}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)

\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)

\(\Rightarrow x=12\) (nh)

8 tháng 3 2017

\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{\left(2x-2\right)2x}=\dfrac{11}{48}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{\left(2x-2\right)2x}\right)=\dfrac{11}{48}\)

\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{11}{48}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{11}{24}\)\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{24}\)

\(\Leftrightarrow2x=24\Leftrightarrow x=12\) (thỏa mãn)

Câu 1: 

a: ĐKXĐ: x+5<>0

hay x<>-5

b: ĐKXĐ: x-2<>0

hay x<>2

6 tháng 5 2018

=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)=\frac{1}{8}\)

=>\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)

=>\(\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

=>\(\frac{1}{2x}=\frac{1}{4}\)

=> \(2x=4\)

=> \(x=2\)

25 tháng 4 2017

Bài 1: a) Ta có : \(\dfrac{-3}{x}=\dfrac{x}{-27}\Leftrightarrow\left(-3\right).\left(-27\right)=x.x\Leftrightarrow81=x^2\Leftrightarrow9^2=x^2\Leftrightarrow x=9\)

b) Do \(\dfrac{2}{3}\) của x là -150 nên x là: (-150) : \(\dfrac{2}{3}\) = -225

c) \(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{x\left(x+2\right)}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+2}=\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{2}-\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{18}\)

\(\Leftrightarrow x+2=18\)

\(\Leftrightarrow x=16\)

Bài 2:

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right)\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\)

\(A=\left(\dfrac{1}{99}+\dfrac{12}{999}+\dfrac{123}{999}\right).0\)

\(A=0\)

16 tháng 6 2020

\(\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)\cdot2x}=\frac{1}{8}\left(x\inℕ;x\ge2\right)\)

Đặt \(A=\frac{1}{2\cdot4}+\frac{1}{4\cdot6}+...+\frac{1}{\left(2x-2\right)2x}\)

\(2A=\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+...+\frac{2}{\left(2x-2\right)2x}\)

\(2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2x-2}-\frac{1}{2x}\)

\(2A=\frac{1}{2}-\frac{1}{2x}=\frac{x-1}{2x}\)

\(\Rightarrow A=\frac{x-1}{2x}:2=\frac{x-1}{2x}\cdot\frac{1}{2}=\frac{x-1}{4x}\)

Mà \(A=\frac{1}{8}\Rightarrow\frac{x-1}{4}=\frac{1}{8}\)

\(\Leftrightarrow8x-8=4\)

\(\Leftrightarrow8x=12\)

\(\Leftrightarrow x=\frac{12}{8}=\frac{3}{2}\left(ktm\right)\)

Vậy không có x thỏa mãn yêu cầu đề bài

1 tháng 5 2019

\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{\left(2x-2\right).2x}\right)=\frac{1}{8}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}=\frac{1}{8}:\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)

\(\Rightarrow\frac{1}{2x}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\)

\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)

26 tháng 6 2019

TL:
\(\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{\left(2x-2\right)2x}\right)=\frac{1}{8}\)  

\(\frac{1}{2}-\frac{1}{4x}=\frac{1}{8}\) 

\(\frac{1}{4x}=\frac{3}{8}\) 

=>x=2/3

hc tốt