\(D=\frac{-1^2}{1.2}.\frac{-2^2}{3.2}...\frac{-101^2}{101.102}>\frac{-1}{100}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2016

\(D=\frac{\left(-1\right).\left(-1\right)}{1.2}.\frac{\left(-2\right).\left(-2\right)}{2.3}...\frac{\left(-101\right).\left(-101\right)}{101.102}\)

\(=\frac{\left(-1\right)\left(-1\right)\left(-2\right)\left(-2\right)...\left(-101\right)\left(-101\right)}{1.2.2.3...101.102}\)

\(=\frac{\left[\left(-1\right)\left(-2\right)...\left(-101\right)\right].\left[\left(-1\right).\left(-2\right)...\left(-101\right)\right]}{\left(1.2...101\right).\left(2.3...102\right)}\)

\(=\left(-1\right).\frac{-1}{102}\)

\(=\frac{1}{102}\)

Vì \(\frac{1}{102}>\frac{-1}{100}\)

Vậy\(D>\frac{-1}{100}\)

9 tháng 5 2019

Sao k có ai giúp mk hết vậy >:((, thôi để mk tự giúp mk vậy :>. E mới nghĩ ra cách này có gì sai anh giúp đỡ.

Cách 1 - Ta có :

\(A=\frac{1}{1.2}+\frac{1}{1.3}+\frac{1}{1.4}+...+\frac{1}{3.2}+\frac{1}{3.3}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

\(\Rightarrow A=\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}\)

Mà \(\frac{5}{6}>\frac{2}{3}\Rightarrow\frac{5}{6}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{6}+\frac{1}{9}>\frac{2}{3}\)

\(\Leftrightarrowđpcm\)

11 tháng 5 2019

~ Nguyệt ~:Đúng rồi nha em.

Anh nghĩ em nên trích ra các số quy luật, sau đó tính tổng rồi so sánh.

Như thế bài làm của em sẽ hay hơn.

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

24 tháng 3 2018

*\(\frac{x}{200}\)=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\)....\(\frac{99^2}{99.100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{2}\).\(\frac{2}{3}\)....\(\frac{99}{100}\)

=>\(\frac{x}{200}\)=\(\frac{1}{100}\)

=>100x=200

=>x=2

1 tháng 5 2018

2A=1+1/2+1/2^2+1/2^3+...+1/2^99

-A=    1/2+1/2^2+1/2^3+...+1/2^99+1/2^100

-------------------------------------------------------------------

A=1-1/2^100

A=2^100-1/2^100<1(dpcm)

1 tháng 5 2018

B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =

=1-1/2-1/2-1/3+.........+1/99-1/100

=1-1/100

=99/100 

vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2

4 tháng 4 2018

b) \(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot...\cdot\frac{100^2}{100\cdot101}=\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{1\cdot2\cdot3\cdot4\cdot...\cdot100}\cdot\frac{\left(1\cdot2\cdot3\cdot...\cdot100\right)}{2\cdot3\cdot4\cdot...\cdot101}=1\cdot\frac{1}{101}=\frac{1}{101}\)

a không biết

4 tháng 4 2018

câu b mình thiếu, là \(\frac{100^2}{100.101}\)nhé

1 tháng 7 2016

\(A=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{9^2}{9.10}\)

\(A=\frac{1.1.2.2.3.3...9.9}{1.2.2.3.3.4...9.10}\)

\(A=\frac{1}{10}\)

\(B=\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)

\(B=\frac{1}{99}-\left(\frac{1}{99.98}+\frac{1}{98.97}+...+\frac{1}{3.2}+\frac{1}{2.1}\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}+...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\right)\)

\(B=\frac{1}{99}-\left(\frac{1}{99}-1\right)\)

\(B=\frac{1}{99}-\frac{1}{99}+1\)

\(B=1\)

1 tháng 7 2016

sorry nha Thiên Sứ đội lốt Ác Quỷ mk 5 - 6

21 tháng 5 2016

D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}\)

\(\frac{1}{3}và\frac{3}{4}\)

\(\frac{1}{3}=\frac{4}{12}\)

\(\frac{3}{4}=\frac{9}{12}\)

\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)