Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E H I
XÉT \(\Delta BDC\)VÀ \(\Delta CEB\)
^E=^D=\(90^0\)
BC chung =>\(\Delta BDC=\Delta CEB\left(ch-gn\right)\)
^BCB=^EBC
=> ^DBC=^ECB mà ^ABC=^ACB nên ^IBE=^ICD
ta lại có EB=DC mà AB=AC nên AD=AE
Xét \(\Delta AEI\)VÀ \(\Delta ADI\)
AE=AD
^E=^D=\(90^0\) =>\(\Delta AEI=\Delta ADI\left(ch-cgv\right)\)
AI chung =>^EAI=^DAI
XÉT \(\Delta ABH\)VÀ\(\Delta ACH\)
AB=AC
AH chung =>\(\Delta ABH=\Delta ACH\left(c-g-c\right)\)
^EAI=^DAI =>^AHB=^AHC
MÀ ^AHB + ^AHC=\(180^0\)NÊN ^AHB=^AHC=\(90^0\)
VẬY \(AH\perp BC=\left\{H\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
a, xét tam giác AHB và tam giác AHC có : AH chung
góc AHB = góc AHC = 90 do ...
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác AHB = tam giác AHC (ch - cgv)
b, tam giác AHB = tam giác AHC (câu a)
=> góc BAH = góc CAH (đn)
có HD // AC (gt) => góc DHA = góc HAC (slt)
=> góc DHA = góc DAH
=> tam giác DAH cân tại D (tc)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) Ta có :
+) \(AB< AC\) ( gt )
\(\Rightarrow ACB< ABC\) ( quan hệ gữa góc và cạnh đối diện )
+ ) \(ABH+BAH+AHB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABH+60+90=180\)
\(\Rightarrow ABH=30\)
b ) Ta có :\(AD\)là phân giác góc \(A\) ( gt )
\(\Rightarrow BAD=CAD=\frac{BAC}{2}=\frac{60}{2}=30\)
Mà \(ABH=30\) ( cmt )
\(\Rightarrow ABH=BAD\)
\(\Rightarrow ABH=BAI\)
Xét tam giác \(AIB\) và tam giác \(BHA\) có :
\(AB\) chung
\(AIB=BHA=90\)
\(BAI=ABH\)
\(\Rightarrow\) tam giác \(AIB\) \(=\) tam giác \(BHA\) ( g - c - g )
c ) Xét tam giác \(ABI\) có :
\(ABI+BAI+AIB=180\)( tổng ba góc trong một tam giác )
\(\Rightarrow ABI+30+90=180\)
\(\Rightarrow ABI=60\)
\(\Rightarrow ABE=60\) ( 1 )
Xét tam giác \(ABE\) có :
\(ABE+BAE+AEB=180\) ( tổng ba góc trong một tam giác )
\(\Rightarrow60+60+AEB=180\)
\(\Rightarrow AEB=60\) ( 2 )
Mà \(BAE=60\) ( gt ) ( 3 )
Từ ( 1 ) ; ( 2 ) ; ( 3 )
\(\Rightarrow\) tam giác \(ABE\) đều
Chứng minh câu d:
A B C D H E I 1
Ta có: AE = AB < AC
=> E thuộc canh AC
\(\Delta\)ABE đều mà AD vuông BE tại I => AD là đường trung trực của DE => DB = DE (1)
Dễ chứng minh \(\Delta\)ABD = \(\Delta\)AED
=> ^ABD = ^AED => ^B1 = ^DEC ( góc ngoài )
mà ^B1 là góc ngoài của \(\Delta\)ABC tại B => ^B1 > ^C
=> ^DEC > ^C = ^ECD
Xét trong \(\Delta\)DEC có: ^DEC > ^ECD => DC > DE (2)
Từ (1); (2) => DC > DB
a, Xét tam giác BEC và tam giác BDA có
^EBC _ chung ; BC = AB
Vậy tam giác BEC = tam giác BDA ( ch-gn )
b, Vì tam giác ABC cân tại B, nên BH đồng thời là đường pg
Xét tam giác BEH và tam giác BDH có
BH _ chung ; ^EBH = ^DBH
Vậy tam giác BEH = tam giác BDH (ch-gn)
=> EH = DH ( 2 cạnh tương ứng )
=> tam giác EHD cân tại H
c, Vì tam giác ABC cân tại B, nên BI là đường trung tuyến hay I là tđ AC
mà tam giác ADC vuông tại D, I là tđ AC => DI = 1/2.AC
.