Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M H K
CM: Ta có: t/giác ABC cân tại A
AM là đường trung tuyến
=> AM cũng là đường cao (t/c t/giác cân)
Đường cao BH cắt đường cao AM tại K
=> K là trọng tâm của t/giác ABC
=> CK là đường cao thứ 3
=> CK \(\perp\)AB
Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, M] Đoạn thẳng m: Đoạn thẳng [E, D] Đoạn thẳng n: Đoạn thẳng [E, C] Đoạn thẳng p: Đoạn thẳng [B, D] Đoạn thẳng s: Đoạn thẳng [M, I] Đoạn thẳng t: Đoạn thẳng [M, J] A = (0.26, 6.08) A = (0.26, 6.08) A = (0.26, 6.08) B = (-1.78, 1.2) B = (-1.78, 1.2) B = (-1.78, 1.2) C = (5.58, 1.02) C = (5.58, 1.02) C = (5.58, 1.02) Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm M: Trung điểm của g Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm E: Giao điểm của i, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm D: Giao điểm của j, l Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm K: Giao điểm của f, n Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm H: Giao điểm của h, p Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm I: Giao điểm của q, f Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h Điểm J: Giao điểm của r, h
Kẻ \(MI⊥AB,MJ⊥AC\)
Ta thấy \(\widehat{EAK}=\widehat{AMI}\) (Cùng phụ với \(\widehat{KAM}\))
Vậy nên \(\Delta EAK\sim\Delta AMI\left(g-g\right)\Rightarrow\frac{EA}{AM}=\frac{AK}{MI}=2.\frac{AK}{KC}\)
Tương tự : \(\Delta DAH\sim\Delta AMJ\left(g-g\right)\Rightarrow\frac{DA}{AM}=\frac{AH}{MJ}=2.\frac{AH}{BH}\)
Mà \(\Delta AHB\sim\Delta AKC\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{HB}{KC}\Rightarrow\frac{AH}{HB}=\frac{AK}{KC}\)
Vậy thì \(\frac{AE}{AM}=\frac{DE}{AM}\Rightarrow AE=ED.\)
Tam giác DEM có MA là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại M.
a: BH⊥AM
CK⊥AM
Do đó: BH//CK
b: Xét ΔHMB vuông tại H và ΔKMC vuông tại K có
MB=MC
\(\widehat{HMB}=\widehat{KMC}\)
Do đó: ΔHMB=ΔKMC
Suy ra: MH=MK
hay M là trung điểm của HK
c: Xét tứ giác BHCK có
BH//CK
BH=CK
Do đó: BHCK là hình bình hành
Suy ra: HC//BK
Xét ΔABM và ΔACM, có:
AB = AC (gt)
BM = CM ( do AM là đường trung tuyến)
AM: cạnh chung
Nên: ΔABM = ΔACM (c - c - c)
=> góc AMB = góc AMC ( 2 góc t/ư)
Mà: góc AMB + góc AMC = 180o ( 2 góc kề bù)
Do đó: Góc AMB = góc AMC = 90o
Xét ΔBKM và ΔCKM, có:
BM = CM ( do AM là đường trung tuyến)
góc KMB = góc KMC = 90o ( Hay góc AMB = góc AMC)
KM: cạnh chung
Nên: ΔBKM = ΔCKM ( c - g - c)
=> góc KBM = góc KCM ( 2 góc t/ư)
Gọi CN giao AB tại N
Xét ΔBNC và ΔCHB, có:
góc NCB = góc HBC (hay góc KBM = góc KCM)
BC: cạnh chung
góc NBC = góc HCB (do ΔABC cân tại A)
Do đó: ΔBNC = ΔCHB ( g - c - g)
Nên: NB = HC ( 2 cạnh t/ư)
Lại có: AN + NB = AB (gt)
AH + HC = AC (gt)
Mà: NB = HC (cmt)
AB = AC ( do ΔABC cân tại A)
Do đó: AN = AH
Xét ΔABH = ΔACN, có:
AH = AN (cmt)
góc A: chung
AB = AC ( do ΔABC cân tại A)
Nên: ΔABH = ΔACN ( c - g - c)
=> góc AHB = góc ANC ( 2 góc t/ư)
Mà: góc AHB = 90o (gt)
=> góc ANC = góc AHB = 90o
Vậy CN ⊥ AB
Hay: CK ⊥ AB (đpcm)