Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ∆OAD và ∆OCB có: OA= OC(gt)
ˆAODAOD^=ˆCOBCOB^(=ˆAA^)
OD=OB(gt)
Nên ∆OAD=∆OCB(c.g.c)
suy ra AD=BC.
b) ∆OAD=∆OCB(cmt)
Suy ra: ˆDD^= ˆBB^
ˆA1A1^=ˆC1C1^ => ˆA2A2^=ˆC2C2^
Do đó ∆AOE = ∆OCE(c .c.c)
suy ra: ˆOAEOAE^=ˆCOECOE^
vậy OE là tia phân giác của xOy.
b) ∆AEB= ∆CED(câu b) => EA=EC.
∆OAE và ∆OCE có: OA=OC(gt)
EA=EC(cmt)
OE là cạnh chung.
Nên ∆OAE=∆(OCE)(c .c.c)
suy ra: ˆAOEAOE^=ˆCOECOE^
vậy OE là tia phân giác của góc xOy.
a) Ta có: OD = OB + BD
OC=OA+AC
mà OA=OB; AC=BD
=>OD=OC
Xét 2 TG ODA và OCB;ta có:
OA-OB(gt); O:góc chung; OD=OC(cmt)
=>TG ODA= TG OCB(c.g.c)
=>AD=BC(2 cạnh tương ứng)
b. TG ODA=TG OCB=> góc C=góc D(2 góc tương ứng)
=>OAD=OBC(2 góc tương ứng)
Ta có: OAD+EAC=180
OBC+EBD=180
Từ (1) và (2)=> OAD+EAC=OBC+EBD=180
mà OAD=OBC(cmt)=>EAC=EBD
Xét 2 TG EAC và EBD; ta có:
AC=BD(gt); C=D(cmt); EAC=EBD(cmt)
=>TG EAC=TG EBD (g.c.g)
c. Vì TG EAC=TG EBD=> EA=EB(2 cạnh tương ứng)
Xét TG OBE và OAE, ta có:
OA=OB(gt); EA=EB(cmt); OE:cạnh chung
=>TG OBE=TG OAE(c.c.c)
=>BOE=EOA(2 cạnh tương ứng)
mà OE nằm giữa OA và OB=> OE là phân giác của góc xOy
Không pt đúng ko
Bạn thay điểm E thành điểm F nhé.
a)
Xét tam giác ABM và tam giác ADM có:
AB = AD (gt)
BM = DM (vì M là trung điểm của BD)
AM là cạnh chung
=> Tam giác ABM = Tam giác ADM (c . c . c)
b) Xét tam giác ABD có:
AB = AD (gt)
=> Tam giác ABD cân tại A.
Có M là trung điểm của BD
=> AM là đường trung tuyến của tam giác ABD.
=> AM đồng thời là đường cao của tam giác ABD.
=> AM ⊥ BD.
c) Theo câu b) ta có tam giác ABM = tam giác ADM.
=> BAM = DAM (2 góc tương ứng)
Hay BAK = DAK.
Xét tam giác ABK và tam giác ADK có:
AB = AD (gt)
BAK = DAK (cmt)
AK là cạnh chung
=> Tam giác ABK = Tam giác ADK (c . g . c)
d) Theo câu c) ta có tam giác ABK = tam giác ADK.
=> BK = DK (2 cạnh tương ứng).
Ta có:
ABK + KBF = 1800 (vì 2 góc kề bù)
ADK + KDC = 1800 (vì 2 góc kề bù)
Mà ABK = ADK (cmt)
=> KBF = KDC
Xét tam giác KBF và tam giác KDC có:
KB = KD (cmt)
KBF = KDC (cmt)
BF = DC (gt)
=> Tam giác KBF = Tam giác KDC (c . g . c)
=> BKF = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180 (vì 2 góc kề bù)
Mà BKF = DKC (cmt).
=> BKD + BKF = 1800
Mà BKD + BKF = FKD.
=> FKD = 1800
=> 3 điểm F, K, D thẳng hàng (đpcm).
Chúc bạn học tốt!
a, Xét tam giác ABM và tam giac ADM có:
AM chung
AB = AD
BM = DM
=> tam giác ABM = tam giac ADM
b, Ta có: AB = AD
=> tam giác ABD là tam giác cân tại A
Xét tam giác ABD cân tại A ta có:
AM là đường trung tuyến
=> AM đồng thời là đường cao
=> AM ⊥ BD
c, Ta có: tam giác ABM = tam giac ADM
=> góc BAM = góc DAM
Xét tam giác BAK và tam giác DAK có:
AB = AD
góc BAK = góc DAK
AK chung
=> tam giác BAK = tam giác DAK
d, Gọi giao điểm của AK và FC là O
Ta có: 3 điểm A, O , K thẳng hàng
=> góc AKD+ góc DKO = 1800
Mặt khác ta có: góc DKO đối đỉnh với góc AMF
=> góc DKO = góc AMF
=> góc AMD + góc AMF = 1800
=> 3 điểm D,K,F thẳng hàng
Cậu xem lại bài nhé!!!
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
Steolla
Bài này cũng là toan 1hình mà , không phải sao ??