\(\Delta ABC;\widehat{BAC}=90^o\); \(\widehat{ABI}=\widehat{IBC};ID\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2020

a/ Xét 2 tam giác vuông ΔABI và ΔDBI có:

Cạnh huyền BI chung

\(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)

=> ΔABI = ΔDBI (c.h - g.n)

b/ Có: ΔABI = ΔDBI (cmt)

=> AB = BD (2 cạnh tương ứng)

=> ΔABD cân tại B

Ta có: \(\widehat{ABI}=\widehat{IBC}\left(GT\right)\)

=> BI là phân giác của \(\widehat{ABC}\)

Hay: BI là phân giác của \(\widehat{ABD}\)

Lại có: ΔABD cân tại B (cmt)

=> BI là đường trung trực của ΔABD

Hay: BI là đường trung trực của AD

c/ Ta có: ΔABI = ΔDBI (cmt)

=> AI = ID (2 cạnh tương ứng)

Xét ΔAIE và ΔDIC ta có:

\(\widehat{IAE}=\widehat{IDC}\left(=90^0\right)\)

AI = ID (cmt)

\(\widehat{AIE}=\widehat{DIC}\) (đối đỉnh)

=> ΔAIE = ΔDIC (g - c - g)

=> IE = IC (2 cạnh tương ứng)

ΔIDC vuông tại D

=> ID < IC (cạnh huyền > cạnh góc vuông)

Mà: IE = IC (cmt)

=> ID < IC

1 tháng 1 2017

Hình, tự vẽ:

a/ Xét tam giác ABI và tam giác DBI có:

BA = BD (GT)

góc ABI = góc DBI (GT)

BI: cạnh chung

=> tam giác ABI = tam giác DBI (c.g.c)

b/ Ta có: tam giác ABI = tam giác DBI (câu a)

=> góc BAI = góc BDI = 900 (2 góc tương ứng)

Vậy ID vuông góc BC (đpcm)

c/ Xét tam giác ABC và tam giác DBE có:

BA = BD (GT)

B: góc chung

BC = BE (GT)

=> tam giác ABC = tam giác DBE (c.g.c)

=> góc BAC = góc BDE = 900 (2 góc tương ứng)

Vậy ED vuông góc BC

Ta có: ID vuông góc BC

ED vuông góc BC

=> ID trùng ED

hay E;I;D thẳng hàng với nhau

1 tháng 1 2017

câu d nữa Hạnh

2 tháng 1 2017

là abc xoay 180 độ

30 tháng 12 2017

Hình bạn tự vẽ nha!

Ta có:

AH_|_BC(AH là đường cao tam giác ABC)

DK_|_BC(DK là đường trung trực của BC)

=>AH//DK(t/c đường thẳng song song)

=>góc AED=góc EDK(so le trong) (1)

=>góc BEH=góc EDK( 2 góc đồng vị) (2)

Từ (1),(2) suy ra:

góc AED=góc BEH=góc EDK=góc BDK(do E là giao điểm của AH và BD)

Mặt khác:

Xét tam giác BKD và tam giác DKC,có:

DK cạnh chung

BK=KC( K là trung điểm của BC)

góc BKD=góc DKC=1 vuông

=> tam giác BKD=tam giác DKC(c.g.c)

=>BD=DC

=>tam giác BDC cân tại D 

Nên góc BDK=góc CDK(t/c tam giác cân) (3)

Lại do: AH//DK

=>góc CDK=góc DAH( 2 góc đồng vị) (4)

Từ (3),(4)=>góc BDK=góc DAH

Mà góc AED=góc BDK( so le trong)

E là giao điểm của BD và AH(gt)

Nên E nằm giữa BD và AH

=>góc DAE=góc DAH=góc AED

=>tam giác ADE cân tại D ( đpcm)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

5 tháng 3 2018

a) Xét tam giác vuông ABI và DBI có:

Cạnh BI chung

\(\widehat{ABI}=\widehat{DBI}\left(gt\right)\) 

\(\Rightarrow\Delta ABI=\Delta DBI\)  (Cạnh huyền  - góc nhọn)

b) Do \(\Delta ABI=\Delta DBI\Rightarrow AI=DI\)

Xét tam giác vuông AIE và DIC có:

AI = DI

\(\widehat{AIE}=\widehat{DIC}\) (Hai góc đối đỉnh)

\(\Rightarrow\Delta AIE=\Delta DIC\) (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow IE=IC\) hay tam giác IEC cân tại I.

c) Xét tam giác EBC có ED và CA là các đường cao nên I là trực tâm.

Vậy thì \(BI\perp EC\)

Do \(\Delta ABI=\Delta DBI\Rightarrow AB=DB\)

Xét tam giác ABD có BA = BD nên nó là tam giác cân. Lại có BI là phân giác nên nó đồng thời là đường cao. Vậy \(BI\perp AD\)

Từ đó suy ra AD // EC

5 tháng 3 2018

Nhớ vẽ hình nhé mấy chế!

Giúp với, mau lên nhé, gần đi học rồi

11 tháng 12 2021

a) ΔABD=ΔEBDΔABD=ΔEBD

b) AH//DE;ΔADIAH//DE;ΔADI cân 

c) AE là tia phân giác của ˆHACHAC^

d) DC = 2AI

Giải thích các bước giải:

a) BD là phân giác của ˆABCABC^
⇒ˆABD=ˆEBD⇒ABD^=EBD^
Xét ΔABDΔABD và ΔEBDΔEBD có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD chung
ˆABD=ˆEBDABD^=EBD^ (cmt)
⇒ΔABD=ΔEBD⇒ΔABD=ΔEBD (cạnh huyền - góc nhọn) (*)
b) AH⊥BC;DE⊥BCAH⊥BC;DE⊥BC
⇒AH//ED⇒AH//ED
⇒ˆAID=ˆIDE⇒AID^=IDE^
Từ (*)⇒ˆADI=ˆIDE⇒ADI^=IDE^
⇒ˆAID=ˆADI⇒AID^=ADI^
⇒ΔAID⇒ΔAID cân tại A
c) Từ (*)⇒AB=BE⇒AB=BE (hai cạnh tương ứng)
⇒ΔABE⇒ΔABE cân tại B
AE∩BD=KAE∩BD=K
⇒BK⇒BK vừa là phân giác vừa là đường cao
⇒BK⊥AE⇒BK⊥AE
Xét ΔAIDΔAID cân tại A có AK⊥IDAK⊥ID
⇒AK⇒AK vừa là đường cao vừa là đường phân giác
⇒AE⇒AE là tia phân giác ˆHACHAC^
d) ΔAIDΔAID cân tại A
⇒AI=AD⇒AI=AD
BD là phân giác của ˆABCABC^
⇒ABAC=ADDC=AIDC⇒ABAC=ADDC=AIDC
Để DC=2AI thì AIDC=ABAC=12⇒AC=2ABAIDC=ABAC=12⇒AC=2AB