Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ
B H C P E A F Q
Bài làm
Câu a)
Có góc APH = 90 độ ( HP vuông góc với AB)
Mà góc APH + góc APE = 180 độ (kề bù)
Suy ra góc APE = APH = 90 độ
Xét tam giác APE và tam giác APH có
+ PE = PH (gt)
+ góc APE = góc APH = 90 độ (cmt)
+ AP là cạnh chung
Do đó tam giác APE = tam giác APH (c.g.c)
Có góc AQH + góc AQF = 180 độ (kề bù)
Suy ra góc AQH = góc AQF = 90 độ
Xét tam giác AQH và tam giác AQF có
+ QH = QF (gt)
+ góc AQH = góc AQF = 90 độ (cmt)
+ AQ là cạnh chung
Do đó tam giác AQH = tam giác AQF
Câu b)
Gợi ý: Để chứng minh E, A, F thẳng hàng cần phải chứng minh (cách đơn giản nhất) góc EAF là góc bẹt hay nói cách khác là góc EAF = 180 độ
Trong hình có
Vì tam giác AQF = tam giác AQH (cmt)
Nên góc QAF = góc QAH (hai góc tương ứng)
Vì tam giác APE = tam giác APH (cmt)
Nên góc PAE = góc PAH (hai góc tương ứng)
Mà góc PAQ = góc QAH + góc PAH = 90 độ ( AH nằm giữa AP và AQ)
Suy ra góc QAF + góc PAE = 90 độ
Mà góc EAF = góc EAP + góc BAC + góc QAF
Suy ra góc EAF = 90 độ + góc EAP + góc QAF
Suy ra góc EAF = 90 độ + 90 độ = 180 độ
Vậy E, A, F thẳng hàng
a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH
Suy ra: \(\widehat{EAP}=\widehat{HAP}\)
hay AB là phân giác của góc HAE(1)
Xét ΔAHQ vuông tại Q và ΔAFQ vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAHQ=ΔAFQ
Suy ra: \(\widehat{HAQ}=\widehat{FAQ}\)
hay AC là tia phân giác của góc FAH(2)
b: Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot90^0=180^0\)
=>F,A,E thẳng hàng
a) Vì tam giác ABC cân tại A
=> AB = AC và Góc ABC = Góc ACB
Xét tam giác AHC và tam giác AHB, ta có:
Góc AHB = AHC ( = 90 độ )
AB = AC (cmt)
Góc ABC = Góc ACB ( cmt)
=> Tam giác AHC = Tam giác AHB ( ch-gn )
b) Vì tam giác AHC = Tam giác AHB ( câu a )
=> BH = HC ( Hai cạnh tương ứng )
Xét tam giác BHN và tam giác CHM, ta có:
BH = HC ( cmt )
Góc BHN = Góc CHM ( Hai góc đối đỉnh )
HN = HM ( gt )
=> Tam giác BHN = Tam giác CHM ( c-g-c )
=> Góc HMC = Góc BNH ( Hai góc tương ứng )
Mà góc HMC và góc BNH là hai góc so le trong
=> BN // AC
c) Xét tam giác MHC và tam giác QHB, ta có:
Góc HMC = Góc HQB ( = 90 độ )
Góc MCH = Góc QBH ( do tam giác ABC cân tại A )
HC = HB ( câu b )
=> Tam giác MHC = Tam giác QHB ( ch-gn )
=> Góc MHC = Góc QHB
Mà góc MHC = Góc BHN ( Hai góc đối đỉnh )
=> Góc QHB = Góc BHN
Xét tam giác AQH và tam giác AMH, ta có:
Góc AQH = Góc AMH ( = 90 độ )
AH là cạnh huyền chung
Góc QAH = Góc MAH ( vì tam giác ABH = tam giác ACH )
=> Tam giác AQH = Tam giác AMH ( ch-gn )
=> QH = HM ( Hai cạnh tương ứng )
Mà HM = HN ( gt )
=> QH = HN
Gọi K là trung điểm của QN
Xét tam giác KHQ và tam giác KHN, ta có:
HQ = HN ( cmt )
Góc QHB = Góc BHN ( cmt )
HK là cạnh chung
=> Tam giác KHQ = Tam giác KHN ( c-g-c )
=> Góc QKH = Góc NKH ( Hai góc tương ứng ) và QK = QN ( Hai cạnh tương ứng )
Mà góc QKH và góc NKH là hai góc kề bù
=> Góc QKH = Góc NKH = 180/2 = 90 độ
=> HK là đường trung trực của QN
Hay BC là đường trung trực của QN
b)
Vì PE=PH, mà PH lại vuông góc vs AB
=> BP là đường trung trực của EH
=> ∆BEH là tam giác cân
=> Góc E= góc BHE
Tương tự vậy ∆CHF cũng cân
=> Góc F= góc CHF
Lại có HQ vuông góc AB, BA vuông AC( vì BAC là góc vuông)
=> AB//HQ
=> góc PHQ=90độ ( trong cùng phía vs góc AQH)
Vậy ta có góc EHB + góc FHC =90 độ
Ta có góc E+ góc EBH+góc EHB + góc FHC+ góc F+ FCH = 360 độ ( = tổng 6 gióc 2 tam giác BEH và CFH)
<=>2(góc EHB+góc FHC) + góc EBH + góc FCH = 360 độ
<=>2.90 độ + góc EBH + góc FCH = 360 độ
<=> góc EBH + góc FCH = 360 độ - 180 độ = 180 độ
Ta thấy Góc EBH và góc FCH ở vị trí trong cùng phía bù nhau
=>BE//CF
Xét ΔEAH có
AP là đường cao
AP là đường trung tuyến
Do đó: ΔEAH cân tại E
mà AB là đường cao
nên AB là phân giác của góc HAE(1)
Xét ΔHAF có
AQ là đường cao
AQ là đường trung tuyến
Do đó: ΔHAF cân tại A
mà AC là đường cao
nên AC là đường phân giác(2)
Từ (1) và (2) suy ra \(\widehat{EAF}=2\cdot90^0=180^0\)
hay E,A,F thẳng hàng