\(\Delta\) ABC cân tại A ,D\(\in\)BC ,trên tia đối của tia BC...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2020

A B C D E M N I 1 2 1

(Hình ảnh chỉ mang tính chất minh họa)

a, Ta có: \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow\widehat{B1}=\widehat{C2}\left(1\right)\)

Mà: \(\widehat{C2}=\widehat{C1}\left(đ.đỉnh\right)\left(2\right)\)

Từ: \(\left(1\right)\left(2\right)\Rightarrow\widehat{B1}=\widehat{C1}\)

Xét \(\Delta MDB\) và \(\Delta NCE\) vuông tại \(D;E\) có:

\(BD=CE\left(gt\right)\)

\(\widehat{B1}=\widehat{C1}\left(cmt\right)\)

\(\Rightarrow\Delta MDB=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=NE\left(2c.t.ứng\right)\)

b, Ta có: \(\hept{\begin{cases}MD\perp BE\\NE\perp BE\end{cases}\Rightarrow MD//NE}\)

\(\Rightarrow\widehat{ENI}=\widehat{DMI}\left(so-le-trong\right)\)

Xét \(\Delta IMD\) và \(\Delta INE\)  vuông tại \(D;E\) có:

\(DM=EN\left(cmt\right)\)

\(\widehat{IMD}=\widehat{INE}\left(cmt\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gnđ\right)\)

\(\Rightarrow ID=IE\left(2c.t.ứ\right)\)

\(\Rightarrow I\) là trung điểm của \(DE\left(đpcm\right)\)

P/s: Sửa đề câu a, Chứng minh \(MD=NE\)

20 tháng 1 2020

Sửa đề câu a thành : Chứng minh: MD = NE

ABCDINEM==

   GT  

 △ABC (AB = AC). D \in BC ; BD = CE

 DM ⊥ BC (M \in AB) ; EN ⊥ BC 

 MN ∩ DE = { I } 

   KL

 a, MD = ME

 b, ID = IE

Bài giải:

a, Vì △ABC có AB = AC => △ABC cân tại A => ABC = ACB

Mà ACB = ECN (2 góc đối đỉnh)

=> ABC = ECN

Xét △MDB vuông tại D và △NEC vuông tại E

Có: MBD = NCE (cmt)

          BD = EC (gt)

=> △MDB = △NEC (cgv-gnk)

=> MD = NE (2 cạnh tương ứng)

b, Xét △MDI vuông tại D có: DMI + MID = 90o   

Xét △IEN vuông tại E có: INE + EIN = 90o

Mà  MID = EIN (2 góc đối đỉnh)

=> DMI = INE

Xét △MDI vuông tại D và △NEI vuông tại E

Có: MD = NE (cmt)

      DMI = INE (cmt)

=> △MDI = △NEI (cgv-gnk)

=> ID = IE (2 cạnh tương ứng)

Và I nằm giữa D, E

=> I là trung điểm của DE

A B C D E M N 1 1 2 2 3 3

Bài làm

a) Vì tam giác ABC cân tại A

=> Góc ABC = góc ACB ( 2 góc ở đáy )

Xét tam giác ABC ta có:

A + ABC + ACB = 180o ( Định lí tổng ba góc trong tam giác )

hay ABC + ACB = 180- A

=> 2ABC = 180o - A      ( 1 )   

Ta có: AB + BD = AD 

           AC + CE = AE

Mà AB = AC ( giả thiết ) 

      BD = CE ( giả thiết )

=> AD = AE

=> Tam giác ADE cân tại A

=> Góc D = góc E

Xét tam giác ADE 

Ta có: A + D + E = 180o 

hay D + E = 180o - A

=> 2D = 180o - A       ( 2 ) 

Từ ( 1 ) và( 2 ) => 2D = 2ABC 

                     => D = ABC

Mà góc D và góc ABC ở vị trí đồng vị

=> DE // BC ( đpcm )

b) Ta có: B1 = B2 ( 2 góc đối đỉnh )

               C1 = C2 ( 2 góc đối đỉnh )

Mà B1 = C1 ( tam giác ABC cân tại A )

=> B2 = C2

Xét tam giác MBD và tam giác NCE

có: Góc BMD = góc CNE = 90o 

cạnh huyền: BD = CE ( giả thiết )

Góc nhọn: B2 = C2 ( chứng minh trên )

=> Tam gíc MBD = tam giác NCE ( cạnh huyền - Góc nhọn )

=> MB = NC. ( 2 cạnh tương ứng )

Ta có: MB + BC = MC

           NC + BC = NB

Mà MB = NC ( chứng minh trên )

Cạnh BC chung

=> MC = NB

Xét tam giác ACM và tam giác ABN 

Có: AB = AC ( giả thiết )

       B1 = C1 ( Tam giác ABC cân tại A )

       MC = NB ( chứng minh trên )

=> Tam giác ACM = tam giác ABN ( c.g.c )

=> AM = AN ( 2 cạnh tương ứng )

=> Tam giác AMN cân tại A ( đpcm )

~ Còn câu c. mỏi tay quá, đợi mik tị, mik làm nốt cho, toán hình là sở trường của mik. ~

16 tháng 2 2019

a) Vì AB=AC mà BD=CE 

Suy ra :  AB+BD=AC+CE

Suy ra             AD= AE

Suy ra          tam giác DAE cân tại A

Suy ra           \(\widehat{\widehat{ADE}=_{ }\frac{180^0-\widehat{BAC}}{2}\left(1\right)}\)

Ta có          tam giác ABC cân tại A

suy ra          \(\widehat{\widehat{ABC}=\frac{180^0-\widehat{BAC}}{2}\left(2\right)}\)

Từ (!) và (2) suy ra \(\widehat{ADE=\widehat{ABC}}\)

mà hai góc ở vị trí đồng vị .  Suy ra  \(DE//BC\)

29 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

29 tháng 2 2020

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

10 tháng 5

Trả lời câu hỏi


Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.a) CMR: tam giác ADE cânb)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.d) CMR: HK // BCe) cho HB cắt CK ở N. CMR: A,M,N thẳng hàngbài 2: cho tam giác abc vuông cân tại a , d là đường...
Đọc tiếp

Bài 1: Cho \(\Delta\) ABC cân tại A. Trên tia đối của tia BC và CB lấy theo thứ tự điểm D và điểm E sao cho BD=CE.

a) CMR: tam giác ADE cân

b)Gọi M là trung điểm của BC. CMR: AM là tia phân giác của \(\widehat{DAE}\)và AM \(\perp\) DE.

c) Từ B và C kẻ BH, CK theo thứ tự vuông góc với AD và AE. CMR: BH=CK.

d) CMR: HK // BC

e) cho HB cắt CK ở N. CMR: A,M,N thẳng hàng

bài 2: cho tam giác abc vuông cân tại a , d là đường thẳng bất kỳ qua a ( d không cắt đoạn bc). từ b và c kẻ bd và ce cùng vuông góc với d.

a)CMR: bd // ce

b)CMR: \(\Delta adb\)\(\Delta cea\)

c)CMR: bd + ce = de

d)gọi m là trung điểm của bc.CMR: \(\Delta dam\)\(\Delta ecm\)và tam giác dme vuông cân

bài 3: cho tam giác abc cân tại A (\(\widehat{a}\)< 45o), lấy m\(\in\)bc. từ m kẻ mh // ab (h\(\in\)ac), kẻ mi // ac (i\(\in\)ab).

a)CMR: \(\Delta aih\)=\(\Delta mhi\)

b)CMR: ai = hc

c)Lấy N sao cho hi là trung trực của mn. CMR: in = ib

0