Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a : b : c = 4 : 5 : 6 =>\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{2a}{8}=\frac{3b}{15}=\frac{2a+3b}{8+15}=\frac{58}{23}\Rightarrow\hept{\begin{cases}a=\frac{58}{23}.4=10\frac{2}{23}\\b=\frac{58}{23}.5=12\frac{14}{23}\\c=\frac{58}{23}.6=15\frac{3}{23}\end{cases}}\)
Theo đề bài, ta có:
0,2a=0,3b=0,4c và 2a+3b-5c=-1,8
\(\Rightarrow\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}\) và 2a+3b-5c=-1,8
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{0,2}=\frac{b}{0,3}=\frac{c}{0,4}=\frac{2a+3b-5c}{2.0,2+3.0,3-5.0,4}=\frac{\left(-1,8\right)}{\left(-0,7\right)}=\frac{18}{7}\)
- \(\frac{a}{0,2}=\frac{18}{7}.0,2=\frac{18}{35}\)
- \(\frac{b}{0,3}=\frac{18}{7}.0,3=\frac{27}{35}\)
- \(\frac{c}{0,4}=\frac{18}{7}.0,4=\frac{36}{35}\)
Vậy \(x=\frac{18}{35},y=\frac{27}{35},z=\frac{36}{35}\)
T mk nhé bạn ^...^ ^_^
Ta có : \(0,2a=0,3b=\frac{a}{0,3}=\frac{b}{0,2}\)
\(0,3b=0,4c=\frac{b}{0,4}=\frac{c}{0,3}\)
Quy đòng : \(\frac{a}{0,3}=\frac{b}{0,2};\frac{b}{0,4}=\frac{c}{0,3};\frac{a}{0,12}=\frac{b}{0,08}=\frac{c}{0,06}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
Làm tiếp đi
`a)`
`A(x) + B(x) = 2x - 4x^2 + 1 + x^3 - 4x^2 + 5 - 2x`
`= x^3 - ( 4x^2 + 4x^2 ) + ( 2x - 2x ) + ( 1+ 5 )`
`= x^3 - 8x^2 + 6`
__________________________________________________________
`b)`
`P(x) + B(x) = A(x)`
`=>P(x) = A(x) - B(x)`
`=>P(x) = 2x - 4x^2 + 1 + x^3 + 4x^2 - 5 + 2x`
`=>P(x) = x^3 + ( -4x^2 + 4x^2 ) + ( 2x + 2x ) + ( 1 - 5 )`
`=>P(x) = x^3 + 4x - 4`
Xét: a/16 = b/4
=> 4a = 16b => 4a - 16b = 0 => 4.(a - 4b) = 0
=> a - 4b = 0 => a = 4b
Mà a.b = 4 ( theo giả thiết)
=> 4b.b = 4 => 4b2 = 4 => b2 = 1 => b=1 hoặc b= -1
=> a = 4 hoặc a= -4
Vậy (a = 4 ; b = 1)
hoặc (a = -4 ; b = -1). ĐÚNG 100%.
Ta có: \(\frac{a}{16}=\frac{b}{4}\)và a.b =4
\(\frac{a}{16}=\frac{b}{4}=k\)
\(\frac{a}{16}=k=>a=16k\)
\(\frac{b}{4}=k=>b=4k\)
a.b=16k.4k=4k2
4k2=4
k2=1
=> k=+-1
TH1: Với k =1 => a=16.1=16
b=4.1=4
TH2: Với k= -1 => a=16. (-1)=-16
b= 4.(-1)= -4
Ta có: \(a+b=5\Rightarrow a=5-b\)
Thay \(a=5-b\) vào \(2a-b=4\) ta có:
\(2\cdot\left(5-b\right)-b\)
\(\Rightarrow10-2b-b=4\)
\(\Rightarrow10-3b=4\)
\(\Rightarrow3b=10-4\)
\(\Rightarrow3b=6\)
\(\Rightarrow b=\dfrac{6}{3}=2\)
Lúc này ta tìm được \(a\):
\(a=5-b=5-2=3\)
Vậy: \(a=3,b=2\)