Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=-2,5 vào ta dc
(2.(-2.5))2106+(5y-4)2016
=0+(5y-4)2016
=>(5y-4)2016=0
rồi bạn tìm y
\(\left(2x+5\right)^{2016}\ge0;\left(5y-4\right)^{2016}\ge0\)
=>\(\left(2x+5\right)^{2016}+\left(5y-4\right)^{2016}\ge0\)
theo đề:\(\left(2x+5\right)^{2016}+\left(5y-4\right)^{2016}\le0\)
=>(2x+5)2016=(5y-4)2016=0
ta có:(2x+5)2016=0=>2x=-5=>x=-5/2=-2,5
(5y-4)2016=0=>5y=4=>y=4/5=0,8
vậy y=0,8
\(\left(2x+1\right)\left(3x-\frac{9}{2}\right)=0\Leftrightarrow2x+1=0;3x-\frac{9}{2}=0\Leftrightarrow x=-0,5;x=1,5\Rightarrow x\in\left\{-0,5;1,5\right\}\)
\(A=2^0+2^1+2^2+...+2^{21}\)
\(2A=2^1+2^2+2^3+...+2^{22}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{22}\right)-\left(2^0+2^1+2^2+...+2^{21}\right)\)
\(A=2^{22}-1\)
\(2^{22}-1=2^{2n}-1\)
\(2^{2\times11}-1=2^{2n}-1\)
n = 11