
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có
\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)
Lấy dưới trừ trên vế theo vế ta được
(x + y)2 - 2(x + y) = 215
\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)
Ta lại có
Ta lại có
x3 - y3 = (x - y)(x2 + xy + y2) =
\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)
Giờ chỉ việc thế số vô là có đáp án nhé

\(\frac{-1}{y-1}+\frac{24}{y+2}=13\) ĐKXĐ: y khác 1; y khác 2
=> -1(y+2) + 24(y-1) = 13( y + 2 )(y-1 )
<=> -y - 2 + 24y - 24 = 13(y2 - y + 2y - 2 )
<=> -y - 2 + 24y - 24 - 13y2 + 13y-26y + 26 = 0
<=> -13y2 + 10y = 0
<=> y( -13y + 10 ) = 0
<=> y = 0 hoặc -13y + 10 = 0
<=> y = 0 hoặc y = 10/13
Vậy S = { 0; 10/13 }
Bài làm
\(\frac{-1}{y-1}+\frac{24}{y+2}=13\) ĐKXĐ: y khác 1; y khác -2
\(\Rightarrow-1\left(y+2\right)+24\left(y-1\right)=13\)
\(\Leftrightarrow-y-2+24y-24-13=0\)
\(\Leftrightarrow23y-39=0\)
\(\Leftrightarrow y=\frac{39}{23}\)
Vậy y = 39/23 là nghiệm phương trình.

Bài 1 :
\(2x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\left(2x+1\right)\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\x-5=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=5\end{cases}}\)
KL :...
bài 2 :
\(x^2+6x+9-y^2=\left(x+3\right)^2-y^2\)
\(=\left(x+3-y\right)\left(x+3+y\right)\)

\(x^2+7x+12\)
\(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)=\left(x+3\right)\left(x+4\right)\)
\(x^2+6x+8\)
\(=x^2+2x+4x+8\)
\(=x\left(x+2\right)+4\left(x+2\right)=\left(x+2\right)\left(x+4\right)\)
a) x2 + 7x + 12
= x2 + 3x + 4x + 12
= x.(x+3) + 4.(x+3)
= (x+3).(x+4)
b) x2 + 6x + 8
= x2 + 2x + 4x + 8
= x.(x+2) + 4.(x+2)
= (x+2).(x+4)
lee-minh-beos