K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

=>2A=2+1+1/2+1/22+...+1/22011

=>2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)

=>A=2-1/22012

2 tháng 8 2016

Bài 2 : Rút gọn biểu thức

A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/22012

=>2A=2+1+1/2+1/22+...+1/22011

=>2A-A=(2+1+1/2+1/22+...+1/22011)-(1+1/2+1/22+1/23+...+1/22012)

=>A=2-1/22012

17 tháng 3 2019

A= 1/2+1/22+1/23+1/24+.....+1/22019

2A= 1+1/2+1/22+1/23+1/24+.....+1/22018

2A-A=(1+1/2+1/22+1/23+1/24+.....+1/22018)-(1/2+1/22+1/23+1/24+.....+1/22019)

A=1-1/22019

4 tháng 10 2015

A=1+2+22+23+...+263

2A=2+22+23+...+263+264

\(-\)

\(A=1+2+2^2+....+2^{63}\)

\(A=2^{64}-1\)

Vậy A=264-1

6 tháng 5 2015

 

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)

\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)

\(2A-A=2-\frac{1}{2^{2012}}\Rightarrow A=2-\frac{1}{2^{2012}}\)

\(A=\frac{2^{2013}}{2^{2012}}-\frac{1}{2^{2012}}=\frac{2^{2012}+1}{2^{2012}}\)

4 tháng 5 2016

À bạn Yến Nhi, tại sao mà 22013 - 1 lai bằng 22012 + 1 thế ?

8 tháng 5 2015

A= 1+ 1/2 + 1/22 + ... + 1/22012

(1/2)A= 1/2+1/22+...+1/22013

A-(1/2)A= (1+ 1/2 + 1/22 + ... + 1/22012) - ( 1/2+1/22+...+1/22013)

(1/2)A = 1 - 1/22013

A= (1- 1/22013) : 1/2

 A= 2 - 1/22012

16 tháng 3 2018

A = 1 + 1/22+1/23+...+1/22015

(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016

A = 2 *( 1 -1/22016) = 2 -1/22015

19 tháng 4 2018

A = 1 + 1/22+1/23+...+1/22015

(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016

A = 2 *( 1 -1/22016) = 2 -1/22015

11 tháng 5 2018

            \(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)

\(\Leftrightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2011}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{2012}}\)

11 tháng 5 2018

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\)

\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)

\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\right)\)

\(\Rightarrow A=2-\frac{1}{2^{2012}}\)