Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔBEAΔBEA và ΔDCAΔDCA có:
AE = AC (gt)
ˆBAE=ˆDACBAE^=DAC^ (đối đỉnh)
AB = AD (gt)
⇒ΔBEA=ΔDCA⇒ΔBEA=ΔDCA (c.g.c)
⇒BE=CD⇒BE=CD (2 cạnh t/ư)
b) Ta có: BM=12BEBM=12BE (M là tđ)
DN=12CDDN=12CD (N là tđ)
mà BE = CD ⇒BM=DN⇒BM=DN
Vì ΔBEA=ΔDCAΔBEA=ΔDCA (câu a)
⇒ˆEBA=ˆCDA⇒EBA^=CDA^ (so le trong)
hay ˆMBA=ˆNDAMBA^=NDA^
Xét ΔABMΔABM và ΔADNΔADN có:
AB = AD (gt)
ˆMBA=ˆNDAMBA^=NDA^ (c/m trên)
BM = DN (c/m trên)
⇒ΔABM=ΔADN(c.g.c)⇒ΔABM=ΔADN(c.g.c)
⇒ˆBAM=ˆDAN⇒BAM^=DAN^ (2 góc t/ư)
mà ˆDAN+ˆNAB=180oDAN^+NAB^=180o (kề bù)
⇒ˆBAM+ˆNAB=180o⇒BAM^+NAB^=180o
⇒M,A,N⇒M,A,N thẳng hàng.
a: Xét tứ giác ABDE có
M là trung điểm của AD
M là trung điểm của BE
DO đó: ABDE là hình bình hành
Suy ra: AE//BD
hay AE//BC(1)
Xét tứ giác AFDC có
M là trung điểm của AD
M là trung điểm của CF
Do đó: AFDC là hình bình hành
SUy ra: AF//DC
hay AF//BC(2)
Từ (1) và (2) suy ra E,A,F thẳng hàng
b: Xét tứ giác BFEC có
M là trung điểm của BE
M là trung điểm của CF
Do đó: BFEC là hình bình hành
Suy ra: BF//EC
Câu hỏi của Tuấn Anh Nguyễn - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo link bài làm tương tự nhé!
Ta có:
AMC'=BMC(c.g.c) suy ra AC'=BC (1)
ANB'=CNB(c.g.c) suy ra AB'=BC (2)
Từ (1)(2) suy ra AB'=AC'
hay A là trung điểm của B'C'
bài 2)
Ta có: 16x : 2y = 128
\(\Leftrightarrow\)24x : 2y = 27
\(\Leftrightarrow\)24x - y = 27
\(\Leftrightarrow\)4x - y = 7 (1)
Ta lại có: x = \(\frac{y}{3}\)\(\Rightarrow\)x = 3y (2)
Thay (2) vào (1) ta đc:
4*3y - y = 7
\(\Leftrightarrow\)11y = 7
\(\Leftrightarrow\)y = \(\frac{7}{11}\)
\(\Rightarrow\)x = \(\frac{7}{11}\): 3 = \(\frac{7}{33}\)
3,
A B C M N E F
a, Xét t/g AME và t/g BMC có:
MA = MB (gt)
ME = MC (gt)
góc AME = góc BMC (đối đỉnh)
Do đó t/g AME = t/g BMC (c.g.c)
b, Vì t/g AME = t/g BMC (câu a) => góc AEM = góc BCM (2 góc tương ứng)
Mà góc AEM và góc BCM là hai góc ở vị trí so le trong nên AE // BC
c, Xét t/g ANF và t/g CNB có:
AN = CN (gt)
NF = NB (gt)
góc ANF = góc CNB (đối đỉnh)
Do đó t/g ANF = t/g CNB (c.g.c)
=> AF = BC (2 cạnh tương ứng)
d, Vì t/g ANF = t/g CNB (câu c) => góc AFN = góc NBC (2 góc tương ứng)
Mà góc AFN và góc NBC là hai góc ở vị trí so le trong nên AF // BC
Ta có: AE // BC, AF // BC
=> AE trùng AF
=> A,E,F thẳng hàng (1)
Vì t/g AME = t/g BMC => AE = BC (2 góc tương ứng)
Ta lại có: AE = BC, AF = BC => AE = AF (2)
Từ (1) và (2) => A là trung điểm của EF
A B C F E M D
a)Xét ΔAME và ΔDMB có:
AM=DM(gt)
\(\widehat{AME}=\widehat{DMB}\left(đđ\right)\)
ME=MB(gt)
=> ΔAME=ΔDMB(c.g.c)
=> \(\widehat{AEM}=\widehat{DBM}\). Mà hai góc này ở vị trí sole trong
=> AE//BC
b)Xét ΔAMF và ΔDMC có:
AM=DM(gt)
\(\widehat{AMF}=\widehat{DMC}\left(đđ\right)\)
MF=MC(gt)
=> ΔAMF=ΔDMC(c.g.c)
=> \(\widehat{AFM}=\widehat{DCM}\). Mà hai góc này ở vị trí sole trong
=> AF//DC
Vì: AE//BC(cmt) ; AF//BC(cmt)
=> Ba điểm E,A ,F thẳng hàng
c) Xét ΔMBF và ΔMEC có:
MB=ME(gt)
\(\widehat{BMF}=\widehat{EMC}\left(đđ\right)\)
MF=MC(gt)
=>ΔMBF=ΔMEC(c.g.c)
=>\(\widehat{MFB}=\widehat{MCE}\). Mà hai góc này ở vị trí sole trong
=>BF//CE