Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Ta có A = 3 + 32 + 33 + ... 32018
=> 3A = 32 + 33 + 34 + .... + 32019
Khi đó 3A - A = (32 + 33 + 34 + .... + 32019) - (3 + 32 + 33 + ... 32018)
=> 2A = 32019 - 3
=> A = \(\frac{3^{2019}-3}{2}\)
b) Bạn xem lại đề đi ak
Sửa đề : A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
A = 1 + 3 + 32 + 33 + ... + 32017 + 32018
3A = 3( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019
3A - A = 2A
= 3 + 32 + 33 + ... + 32018 + 32019 - ( 1 + 3 + 32 + 33 + ... + 32017 + 32018 )
= 3 + 32 + 33 + ... + 32018 + 32019 - 1 - 3 - 32 - 33 - ... - 32017 - 32018
= 32019 - 1
2A + 1 = 3n ( sửa - thành + )
<=> 32019 - 1 + 1 = 3n
<=> 32019 = 3n
<=> n = 2019
Sai thì cho mình xin lỗi ạ :)
\(\left(7x-11\right)^3=2^5.5^2+100\)
\(\left(7x-11\right)^3=800+100\)
\(\left(7x-11\right)^3=900\)
xg bạn tìm số nào mũ 3 lên thì đc 900 nhé, bạn tìm đc thì xuống dòng => 7x-11=....
b)
\(3^{x+3}-243=3^x\)
\(3^{x+3}-3^5=3^x\)
\(\Rightarrow x+3-5=x\)
\(\Rightarrow x+3=x+5\left(???\right)\)
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
\(A=1+3+3^2+3^3+...+3^{10}\)
\(3A=3+3^2+3^3+...+3^{10}+3^{11}\)
\(3A-A=\left(3+3^2+3^3+...+3^{10}+3^{11}\right)-\left(1+3+3^2+3^3+...+3^{10}\right)\)
\(2A=3^{11}-1\)
\(\Rightarrow\)\(2A+1=3^{11}-1+1=3^{11}\)
\(\Rightarrow\)\(n=11\)
\(A=1+3+3^2+3^3+...+3^{10}\)
\(3A=3+3^2+3^3+...+3^{10}+3^{11}\)
\(3A-A=\left(3+3^2+3^3+...+3^{10}+3^{11}\right)-\left(1+3+3^2+3^3+3^{10}\right)\)
\(2A=3^{11}-1\)
\(\Rightarrow2A+1=3^{11}-1+1=3^{11}\)
\(\Rightarrow n=11\)