Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Làm tính nhân :
a) \(2x\left(x^2-7x-3\right)\)
\(=2x^3-14x-6x\)
b) \(\left(-2x^3+3y^2-7xy\right).4xy^2\)
\(=-8x^4y^2+3x-28x^2y^3\)
c) \(\left(25x^2+10xy+4y^2\right).\left(5x-2y\right)\)
\(=-50x^2y-20xy^2-8y^3+125x^3+50x^2y+20xy^2\)
\(=-8y^3+125x^3\)
d) \(\left(5x^3-x^2+2x-3\right)\left(4x^2-x+2\right)\)
\(=10x^3-2x^2+4x-6-5x^4+x^3-2x^2+3x+20x^5-4x^4+8x^3-12x^2\)
\(=20x^5-9x^4+19x^3-16x^2-7x-6\)
Câu 3: phân tích
a)\(4x-8y\)
\(=4\left(x-2y\right)\)
b)\(x^2+2xy+y^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
c)\(3x^2+5x-3xy-5y\)
\(=3x^2-3xy+5x-5y\)
\(=3x\left(x-y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+5\right)\)
Bài 1:
a, 4x2+6x=2x(2x+3)
b, 12x(x-2y)-9y(x-2y)=3(x-2y)(4x-3y)
c, 3x3-6x2+3x=3x(x2-2x+1)=3x(x-1)2
d, 2x3-2xy2+12x2+18x=2x(x2-y2)+2x(6x+9)=2x(x2+6x+9-y2)
=2x[(x+3)2-y2 ]=2x(x+y+3)(x-y+3)
Bài 2:
a, 5x(x-1)+10x-10=0 <=> 5x(x-1)+10(x-1)=0 <=> 5(x-1)(x+2)=0
\(\Leftrightarrow\orbr{\begin{cases}5\left(x-1\right)=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}}\)
b,(x+2)(x+3)-2x=6 <=> (x+2)(x+3)-2(x+3)=0 <=> (x+3)(x+2-2)=0 <=> x(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
c, \(\left(x-1\right)\left(x-2\right)-2=0\Leftrightarrow x^2-3x+2-2=0\Leftrightarrow x\left(x-3\right)\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}}\)
Bài 3
a, \(x^4y+3x^3y^2+3x^2y^3+xy^4=xy\left(x^3+3x^2y+3xy^2+y^3\right)=xy\left(x+y\right)^3\)
b, \(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)-\left(2x\right)^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
hình học
Bài 1 \(\widehat{D}=360^o-\widehat{A}-\widehat{B}-\widehat{C}=360^o-50^o-120^o-90^o=100^o\)
Bài 2 \(Tc:\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=360^o-50^o-110^o=200^o\)
\(\Rightarrow\widehat{C}=200^o-\widehat{D}\)mà \(\widehat{C}=3\widehat{D}\)nên ta có \(3\widehat{D}=200^o-\widehat{D}\Leftrightarrow4\widehat{D}=200^o\Leftrightarrow\widehat{D}=50^o\Rightarrow\widehat{C}=3.50^o=150^o\)
Bài 4 \(\widehat{C}+\widehat{D}=360^o-90^o-110^o=160^o\)
Áp dụng dãy tỉ số bằng nhau
\(\frac{\widehat{C}}{3}=\frac{\widehat{D}}{5}=\frac{\widehat{C}+\widehat{D}}{3+5}=\frac{160^0}{8}=30^o\)
\(\Rightarrow\frac{\widehat{C}}{3}=30^o\Rightarrow\widehat{C}=30^o.3=90^o\Rightarrow\widehat{D}=160^o-90^o=70^o\)
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
86.NHỮNG PHÉP TÍNH THÚ VỊ
24+36=1
11+13=1
158+207=1
46+54=1
thì khi đó người làm câu hỏi bị sai/ mình nghĩ thế
\(a,x^2-20x+101\)
\(\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)
dấu "=" xảy ra khi và chỉ khi \(x=10\)
\(< =>MIN=1\)
\(b,4a^2+4a+2\)
\(\left(4a^2+4a+1\right)+1=\left(2a+1\right)^2+1\ge1\)
dấu "=" xảy ra khi và chỉ khi \(a=\frac{1}{2}\)
\(< =>MIN=1\)
\(c,x^2-4xy+5y^2+10x-22y+28\)
\(\left(x^2-4xy+4y^2\right)+10x-20y+\left(y^2-2y+1\right)+27\)
\(\left(x-2y\right)^2+10\left(x-2y\right)+\left(y-1\right)^2+27\)
\(\left(x-2y\right)^2+10\left(x-2y\right)+25+\left(y-1\right)^2+2\)
\(\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
dấu "=" xảy ra khi và chỉ khi
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\hept{\begin{cases}x-2y+5=0\\2y-2=0\end{cases}< =>x+3=0< =>x=-3}}\)
\(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
\(< =>MIN=2\)
a) Ta có: x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì (x - 10)2 \(\ge\)0 \(\forall\)x \(\in\)R => (x - 10)2 + 1 \(\ge\)1
Dấu "=" xảy ra<=> x - 10 = 0 <=> x = 10
Vậy Min x2 - 20x + 101 = 1 <=> x = 10
b) Ta có: 4a2 + 4a + 2 = 4a2 + 4a + 1 + 1 = (2a + 1)2 + 1
Do (2a + 1)2 \(\ge\)0 \(\forall\)x \(\in\)R => (2a + 1)2 + 1 \(\ge\) 1
Dấu "=" xảy ra<=> 2a + 1 = 0 <=> a = -1/2
Vậy min 4a2 + 4a + 2 = 1 <=> a = -1/2