K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2019

a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC 

   =) MC va MB lần lượt chia  góc C và B làm 2 nửa

    =) ^B = ^B1+ ^B2                             ^C= ^C1+^C2

      theo quan hệ giứa góc và cạnh đối diên có

                  ab tương ứng vs góc C, ac tương ứng vs góc B

                    MB .........................C1, MC                          B2

     CÓ : ^B+^C > ^B2+^C2

      =) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)

CON B THÌ CHỊU NHÉ 

8 tháng 3 2019

A B C M

a) Làm như bạn ly

b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC

MA + MC < AB + BC

Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)

Suy ra \(MA+MB+MC< AB+BC+CA\) (1)

Mặt khác,áp dụng BĐT tam giácL

MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)

Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)

19 tháng 5 2017

sai đề nhé bn. bạn đăng lại đi

20 tháng 5 2017

đề đúng mà bạn

4 tháng 6 2018

Ta có:

A B C O

\(OA+OB< AC+BC\)

\(OA+OC< AB+BC\)

\(OC+OB< AB+AC\) 

Cộng theo từng vế ba bất đẳng thức trên ta được :

\(2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)

hay \(OA+OB+OC< AB+AC+BC\)(1)

Mặt khác trong các tam giác OAB,OBC,OCA,theo bất đẳng thức tam giác ta lại có :

\(OA+OB>AB\)

\(OB+OC>BC\)

\(OC+OA>AC\)

Cộng theo từng vế ba bất đẳng thức trên, ta được :

\(2\left(OA+OB+OC\right)>AB+BC+AC\)

hay \(OA+OB+OC>\frac{AB+AC+BC}{2}\)(2)

Từ (1) và (2) :

\(\Rightarrow\frac{AB+AC+BC}{2}< OA+OB+OC< AB+AC+BC.\)

24 tháng 3 2017

Bạn ơi bài này ở sách nào thế

7 tháng 4 2021
Câu a,Vì M thuộc miền trong của tam giác abc. Nên tia BM thuộc miền trong của góc B, nó cắt AC tại B D nằm giữa A và C, M nằm giữa B và D Trong tam giác BAD có: BM+MD
9 tháng 2 2017

dễ mak a

a tự làm ik

21 tháng 4 2020

A B C K M O E H P

21 tháng 4 2020

a ) a.Vì P∈Trung trực của BC

\(\Rightarrow PB=PC\)

Ta có : AP là phân giác \(\widehat{BAC},PH\perp AB,PK\perp AC\Rightarrow PH=PK\)

Mà \(\widehat{PHB}=\widehat{PKC}=90^0\)

\(\Rightarrow\Delta PBH=\Delta PCK\) (cạnh huyền-cạnh góc vuông)

\(\Rightarrow BH=CK\)

b ) Ta có : \(PH=PK,\widehat{PHA}=\widehat{PKA}=90^0\)

\(\Rightarrow\Delta PHA=\Delta PKA\)(cạnh huyền-cạnh góc vuông)

\(\Rightarrow AH=AK\)

\(\Rightarrow\Delta AHK\) cân tại A 

Mà AP là phân giác ^A 

\(\Rightarrow AP\perp HK\)

Qua B kẻ BE // AK , \(E\in HK\)

\(\Rightarrow\widehat{BEH}=\widehat{AKH}\)

Do \(\Delta AHK\) cân tại A \(\Rightarrow\widehat{AKH}=\widehat{AHK}\)

\(\Rightarrow\widehat{BEH}=\widehat{BHE}\Rightarrow BH=BE\)

Mà \(BH=CK\Rightarrow BE=CK\)

Lại có BE // CK => \(\widehat{EBM}=\widehat{MCK}\)

Do M là trung điểm BC \(\Rightarrow MB=MC\Rightarrow\Delta EBM=\Delta KCM\left(c.g.c\right)\)

\(\Rightarrow\widehat{BME}=\widehat{KMC}\)

\(\Rightarrow\widehat{EMK}=\widehat{BME}+\widehat{BMK}=\widehat{CMK}+\widehat{BMK}=\widehat{BMC}=180^0\)

\(\Rightarrow E,M,K\) thẳng hàng 

\(\Rightarrow H,M,K\) thẳng hàng vì E , H , K thẳng hàng 

c ) Do \(PA\perp HK\) ( câu a ) 

\(\Rightarrow AP\perp HK=O\)

Kết hợp AH = AK \(\Rightarrow O\) là trung điểm HK

\(\Rightarrow OH=OK\)

\(\Rightarrow OA^2+OP^2+OH^2+OK^2=OA^2+OP^2+OH^2+OH^2\)

                                                                 \(=\left(OA^2+OH^2\right)+\left(OP^2+OH^2\right)\)

                                                                    \(=AH^2+PH^2\)

                                                                    \(=AP^2,\left(PH\perp AB\right)\)