Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(3\sqrt{2}-\sqrt{8}+\sqrt{50}-4\sqrt{32}=3\sqrt{2}-2\sqrt{2}+5\sqrt{2}-16\sqrt{2}=-10\sqrt{2}\)
b) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}=4\sqrt{3}\)
c)\(\sqrt{12}+2\sqrt{75}-3\sqrt{48}-\frac{2}{7}\sqrt{147}=2\sqrt{3}+10\sqrt{3}-12\sqrt{3}-2\sqrt{3}=-2\sqrt{3}\)
d) \(\sqrt{\left(3+\sqrt{5}\right)^2}-\sqrt{9-4\sqrt{5}}\)
\(=\left|3+\sqrt{5}\right|-\sqrt{\left(\sqrt{5}-2\right)^2}=3+\sqrt{5}-\left|\sqrt{5}-2\right|=3+\sqrt{5}-\sqrt{5}+2=5\)
e) \(\left(\frac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\frac{5}{\sqrt{5}}\right):\frac{\sqrt{5}+\sqrt{2}}{3}\)
\(=\left[\frac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\sqrt{5}\right]\cdot\frac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\cdot\frac{3}{\sqrt{5}+\sqrt{2}}=-3\)
Nản k lm nữa ^^
Có: \(\left(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\right)^2\)
\(=\frac{1}{\frac{9}{4}+\sqrt{5}}+\frac{1}{\frac{9}{4}-\sqrt{5}}-2\cdot\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}\cdot\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(=\frac{\frac{9}{4}-\sqrt{5}+\frac{9}{4}+\sqrt{5}}{\frac{1}{16}}-2\cdot\frac{1}{\frac{1}{4}}\)
\(=72-8=64\)
Mà; \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}< \frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}\)
\(\Rightarrow\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}< 0\)
Do đó: \(\frac{1}{\sqrt{\frac{9}{4}+\sqrt{5}}}-\frac{1}{\sqrt{\frac{9}{4}-\sqrt{5}}}=-8\)
Khi đó: \(x=9-8=1\)
Với \(x=1\), ta có:
\(f\left(1\right)=\left(1^4-3\cdot1+1\right)^{2016}=\left(-1\right)^{2016}=1\)
a) \(\sqrt{4\left(1-x\right)^2}-12=0\)
\(\sqrt{4\left(1-x\right)^2}=0+12\)
\(\sqrt{4\left(1-x\right)^2}=12\)
\(\left[\sqrt{4\left(1-x\right)^2}\right]^2=12^2\)
\(4-8x+4x^2=144\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-5\end{cases}}\)
b) \(\sqrt{4x^2-12x+9}=5\)
\(\left(\sqrt{4x^2-12x+9}\right)^2=5^2\)
\(4x^2-12x+9=25\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
sao 1 bên 5 một bên 4 thế
Đặt \(a=\sqrt[3]{9+4\sqrt{5}};b=\sqrt[3]{9-4\sqrt{5}}\Rightarrow A=a+b\)
Ta có : \(A^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=a^3+b^3+3ab.A\)
\(=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\)
\(\Rightarrow A=18+3A\Leftrightarrow A^3-3A-18\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)\Rightarrow A=3\)