\(\left(x-3\right)\left(x+5\right)+20\ge4\) 

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(\left(x-3\right)\left(x+5\right)+20\ge4\)

<=>  \(x^2+2x-15+20\ge4\)

<=>  \(\left(x^2+2x+1\right)+4\ge4\)

<=>  \(\left(x+1\right)^2+4\ge4\)  luôn đúng

Dấu "=" xảy ra   <=>   \(x=-1\)

1 tháng 8 2018

Ta có: 

     \((x-3)(x+5)+20\geq4\)

\(\Leftrightarrow (x-3)(x+5)\geq-16\)

\(\Leftrightarrow (x-3)x+(x-3)5\geq-16\)

\(\Leftrightarrow x^2-3x+5x-15\geq-16\)

\(\Leftrightarrow x^2+2x-15\geq-16\)

\(\Leftrightarrow x^2-2x\geq-16+15\)

\(\Leftrightarrow x^2-2x\geq-1\)

\(\Leftrightarrow x(x-2)\geq-1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x(x-2)=-1\)

Mà \(x>x-2\)

\(\Rightarrow\)\(x=1;x-2=-1\)

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi. 

12 tháng 10 2020

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1

Dấu "=" xảy ra khi \(a=b\)

13 tháng 10 2020

Cauchy đi mài ._.

Vì a, b > 0 nên áp dụng bđt Cauchy cho :

  • Bộ số a, b ta được :

\(a+b\ge2\sqrt{ab}\)

  • Bộ số 1/a, 1/b ta được :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)

Nhân hai vế tương ứng ta có đpcm

Dấu "=" xảy ra <=> a = b 

18 tháng 4 2018

x x+1 1-x tổng -1 1 0 0 -x-1 x+1 x+1 -1+x -1+x 1-x -2 2x 2 (1)

(1) với -1 ≤ x <1

2x=2 ⇔ x=1 (ktm)

=> pt vô nghiệm

18 tháng 4 2018

Câu a :

Theo BĐT trên ta có :

\(\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=2\)

Đẳng thức xảy ra khi \(x=0\)

29 tháng 4 2019

Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?

a. \(x+8>3x-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow-x\le2\)

\(\Leftrightarrow x\ge2\)

c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)

d. \(2\left(3x-1\right)-2x< 2x+1\)

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow2x< 3\)

\(\Leftrightarrow x< \frac{3}{2}\)

e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)

f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)

g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow2x+2>2x-1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-25\)

\(\Leftrightarrow x>-\frac{25}{2}\)

i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow x+5-4x-2\le3x+9\)

\(\Leftrightarrow-6x\le6\)

\(\Leftrightarrow x\ge-1\)

j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow10x+8-2x+1\ge48\)

\(\Leftrightarrow8x\ge39\)

\(\Leftrightarrow x\ge\frac{39}{8}\)

30 tháng 4 2019

Bạn tự biểu diễn nghiệm trên trục số nhé!

a) \(x+8>3x-1\)

\(\Leftrightarrow x-3x>-8-1\)

\(\Leftrightarrow-2x>-9\)

\(\Leftrightarrow x< \frac{9}{2}\)

b) 3x − (2x+5) ≤ (2x−3)

\(\Leftrightarrow3x-2x-5\le2x-3\)

\(\Leftrightarrow3x-2x+2x\le5-3\)

\(\Leftrightarrow3x\le2\)

\(\Leftrightarrow x\le\frac{2}{3}\)

c) (x − 3) (x + 3) < x (x + 2) + 3

\(\Leftrightarrow x^2-9< x^2+2x+3\)

\(\Leftrightarrow x^2-x^2+2x< 9+3\)

\(\Leftrightarrow2x< 12\)

\(\Leftrightarrow x< 6\)

d) 2 (3x − 1) − 2x < 2x + 1

\(\Leftrightarrow6x-2-2x< 2x+1\)

\(\Leftrightarrow6x-2x+2x< 2+1\)

\(\Leftrightarrow6x< 3\)

\(\Leftrightarrow x< \frac{3}{6}\)

e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)

\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)

\(\Leftrightarrow9-6x>10-5x\)

\(\Leftrightarrow-6x+5x>-9+10\)

\(\Leftrightarrow-x>1\)

\(\Leftrightarrow x< -1\)

f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)

\(\Leftrightarrow x-2-2x+2\le3x\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow x\ge0\)

g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)

\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)

\(\Leftrightarrow2x+2>2x+1\ge24\)

\(\Leftrightarrow2x+2>2x\ge25\)

\(\Leftrightarrow x\ge\frac{25}{2}\)

h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)

\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)

\(\Leftrightarrow6+4x+2>2x-1-12\)

\(\Leftrightarrow2x>-21\)

\(\Leftrightarrow x>\frac{-21}{2}\)

i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)

\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)

\(\Leftrightarrow x+5-4x+2\le3x+9\)

\(\Leftrightarrow-3x-x+4x\le9-5-2\)

\(\Leftrightarrow x\le2\)

j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)

\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)

\(\Leftrightarrow10x+8-2x-1\ge48\)

\(\Leftrightarrow10x-2x\ge48-8+1\)

\(\Leftrightarrow8x\ge41\)

\(\Leftrightarrow x\ge\frac{41}{8}\)

Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^

8 tháng 9 2017

Cách 1 sai cách 2 mới đúng

8 tháng 9 2017

cách 1 bị sai á

29 tháng 12 2019

\(a,2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
\(\Leftrightarrow2x^2+10x=x^2+6x+9+x^2-2x+1+20\)
\(\Leftrightarrow2x^2-x^2-x^2+10x-6x+2x=30\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)

\(b,\left(2x-2\right)^2=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3\left(x^2+3x-10\right)\)

\(\Leftrightarrow4x^2-8x+4=x^2+2x+1+3x^2+9x-30\)

\(\Leftrightarrow4x^2-8x-x^2-3x^2-2x-9x=-33\)

\(\Leftrightarrow-19x=-33\)

\(\Leftrightarrow x=\frac{33}{19}\)

\(c,\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)

\(\Leftrightarrow x^2-2x+1+x^2+6x+9=2\left(x^2-x-2\right)+38\)

\(\Leftrightarrow6x=25\)

\(\Leftrightarrow x=\frac{25}{6}\)

21 tháng 1 2018

câu b sai rồi bạn

\(x^8+4=\left(x^4+2\right)^2-4x^4\) mới đúng

1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)

\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )

2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)

\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)

\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )

20 tháng 8 2020

Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))

1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)

=> \(-4x^2+28x+4x^3-20x=28x^2-13\)

=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)

=> \(-4x^2+4x^3+8x-28x^2+13=0\)

=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)

=> \(-32x^2+4x^3+8x+13=0\)

=> vô nghiệm

2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)

=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)

=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)

=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)

=> \(-14x^2-56x+12=0\)

=> .... tự tìm

Câu c dấu bằng chỗ nào ?