K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mỗi câu sau đây đúng hay sai ? a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác...
Đọc tiếp

Mỗi câu sau đây đúng hay sai ?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn nội tiếp tam giác ấy

e) Giao điểm ba đường phân giác của một tam giác là tâm đường tròn nội tiếp tam giác ấy

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy

g) Tứ giác có tổng độ dài các cặp cạnh đối bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó

1
8 tháng 6 2017

Các câu đúng : a, d, e, g, h

Các câu sai : b, c, f, i

Mỗi câu sau đây đúng hay sai?a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpb) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếpc) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấyd) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.e) Giao điểm...
Đọc tiếp

Mỗi câu sau đây đúng hay sai?

a) Mỗi tam giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

b) Mỗi tứ giác luôn có một đường tròn ngoại tiếp và một đường tròn nội tiếp

c) Giao điểm ba đường trung tuyến của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy

d) Giao điểm ba đường trung trực của một tam giác là tâm đường tròn ngoại tiếp tam giác ấy.

e) Giao điểm ba đường phân giác trong của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

f) Giao điểm ba đường cao của một tam giác là tâm đường tròn nội tiếp tam giác ấy.

g) Tứ giác có tổng độ dài các cặp cạnh đối nhau bằng nhau thì ngoại tiếp được đường tròn

h) Tứ giác có tổng số đo các cặp góc (trong) đối nhau bằng nhau thì nội tiếp được đường tròn.

i) Đường tròn tiếp xúc với các đường thẳng chứa các cạnh của tam giác là đường tròn nội tiếp tam giác đó.

1
28 tháng 6 2017

Câu a: Đúng     Câu b: Sai     Câu c: Sai

Câu d: Đúng     Câu e: Đúng     Câu f: Sai

Câu g: Đúng     Câu h: Đúng     Câu i: Sai

17 tháng 2 2017

- Nối (1) - (5)

- Nối (2) - (6)

- Nối (3) - (4)

3 tháng 2 2019

- Nối (1) - (5)

- Nối (2) - (6)

- Nối (3) - (4)

3 tháng 11 2020

Ớ thế phần C làm như thế nào

21 tháng 4 2020

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

9 tháng 2 2018

+ ) Ta thấy ngay hai tam giác vuông AHC và ANC có chung cạnh huyền AC nên A, H, N, C cùng thuộc đường tròn đường kính AC.

\(\Rightarrow\widehat{HNA}=\widehat{HCA}\) (Hai góc nội tiếp cùng chắn cung AH)

Ta thấy ngay hai tam giác vuông AMB và AHB có chung cạnh huyền AB nên A, M, H, B cùng thuộc đường tròn đường kính AB.

\(\Rightarrow\widehat{HMN}=\widehat{ABH}\) (Góc ngoài tại đỉnh đối diện bằng góc trong tại đỉnh)

Vậy nên \(\Delta ABC\sim\Delta HMN\left(g-g\right)\)

+) Ta có \(\widehat{ADC}=\widehat{ABC}\)  (Hai góc nội tiếp cùng chắn cung AC)

Mà \(\Delta ABC\sim\Delta HMN\Rightarrow\widehat{ABC}=\widehat{HMN}\) 

nên \(\widehat{ADC}=\widehat{HMN}\)

Chúng lại ở vị trí so le trong nên DC // HM

Ta có \(DC\perp AC\Rightarrow HM\perp AC\)

Gọi J là trung điểm AB

Ta có ngay IJ là đường trung bình tam giác ABC nên IJ // AC

Vậy nên \(HM\perp IJ\)

Mà J là tâm đường tròn ngoại tiếp tứ giác AMHB nên IJ vuông góc cung HM tại trung điểm HM hay IJ là trung trực của HM.

Vậy thì IM = IH.

Tương tự ta có IM = IH = IN hay I là tâm đường tròn ngoại tiếp tam giác HMN.

11 tháng 2 2018

ad dqi