Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

dễ thôi
ta có:
\(\frac{a}{1+b^2c}=a-\frac{ab^2c}{1+b^2c};\frac{b}{1+c^2d}=b-\frac{bc^2d}{1+c^2d};\frac{c}{1+d^2a}=c-\frac{cd^2a}{1+d^2a};\frac{d}{1+a^2b}=d-\frac{da^2b}{1+a^2b}\)
áp dụng cauchy ta có:
\(b^2c+1\ge2b\sqrt{c};c^2d+1\ge2c\sqrt{d};d^2a+1\ge2d\sqrt{a};a^2b+1\ge2a\sqrt{b}\)
\(=4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\)
theo ông cauchy thì
\(ab\sqrt{c}\le\frac{ab\left(c+1\right)}{2};bc\sqrt{d}\le\frac{bc\left(d+1\right)}{2};cd\sqrt{a}\le\frac{cd\left(a+1\right)}{2};da\sqrt{b}\le\frac{da\left(b+1\right)}{2}\)
\(\Rightarrow4-\frac{ab\sqrt{c}+bc\sqrt{d}+cd\sqrt{a}+da\sqrt{b}}{2}\ge4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\)
vẫn là ông cauchy nói là \(abc+bcd+cda+dab\le\frac{1}{16}\left(a+b+c+d\right)^3=4\)
\(ab+bc+cd+da=\left(b+d\right)\left(a+c\right)\le\frac{\left(a+b+c+d\right)^2}{4}=4\)
\(\Rightarrow4-\frac{\left(abc+bcd+cda+dab\right)+\left(ab+bc+cd+da\right)}{4}\ge4-\frac{4+4}{4}=2\)
\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge2\left(Q.E.D\right)\)
dấu bằng xảy ra khi a=b=c=d=1
\(\Rightarrow\frac{a}{1+b^2c}+\frac{b}{1+c^2d}+\frac{c}{1+d^2a}+\frac{d}{1+a^2b}\ge\left(a+b+c+d\right)-\frac{ab^2c}{2b\sqrt{c}}-\frac{bc^2d}{2c\sqrt{d}}-\frac{cd^2a}{2d\sqrt{a}}-\frac{da^2b}{2a\sqrt{b}}\)

Áp dụng BĐT Bunhiacopxki cho 4 số ta có:
\(\left(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+d}+1.\sqrt{d+a}\right)^2\le\left(1^2+1^2+1^2+1^2\right)\left(2\left(a+b+c+d\right)\right)=8\)
\(\Rightarrow\)\(1.\sqrt{a+b}+1.\sqrt{b+c}+1.\sqrt{c+d}+1.\sqrt{d+a}\le2\sqrt{2}\)
Xảy ra đẳng thức khi \(\frac{1}{\sqrt{a+b}}=\frac{1}{\sqrt{b+c}}=\frac{1}{\sqrt{c+d}}=\frac{1}{\sqrt{d+a}}\)và a + b + c + d = 1 <=> a = b = c = d = 1/4

Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2
Không mất tính tổng quát, ta giả sử a là số nhỏ nhất, tức \(a\le b,a\le c,a\le d\) \(\Rightarrow a\le2\)
Khi đó \(a=1\) hoặc \(a=2\)
Dễ thấy \(a=1\) không thỏa mãn. Vậy \(a=2\)
Suy ra \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Nếu \(b,c,d>3\) thì \(\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}+\frac{1}{3^2}=\frac{1}{3}< \frac{3}{4}\) (vô lí)
Vậy trong 3 số b,c,d tồn tại ít nhất một số không lớn hơn 3
Ta giả sử b là số nhỏ nhất \(b\le3\) , khi đó \(b=2\) hoặc \(b=3\) (vì b = 1 không thỏa)
- Nếu \(b=2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Dễ thấy nếu \(c,d>2\) thì \(\frac{1}{c^2}+\frac{1}{d^2}>\frac{1}{2}\) (vô lí). Vậy \(c,d\le2\)
Với c = 1 hoặc d = 1 ta thấy ngay điều vô lí.
Với c = 2 thì d = 2 và ngược lại.
- Nếu \(b=3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=\frac{7}{18}\)
Dễ thấy nếu \(c,d>3\) thì \(\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{3^2}+\frac{1}{3^2}=\frac{2}{9}< \frac{7}{18}\) (vô lí)
Vậy \(c,d\le3\)
Với c = 1 hoặc d = 1 thấy ngay điều vô lí
Với c= 2 thì d = 2 và ngược lại.
Với c = 3 thì d = \(\frac{5}{18}\) (loại vì \(d\notin N\))
Vậy : \(\left(a;b;c;d\right)=\left(2;2;2;2\right)\)
Cách này có vẻ chặt hơn :)
Nếu \(a,b,c,d>2\) thì \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}+\frac{1}{2^2}=1\) (vô lí)
Vậy trong bốn số a,b,c,d tồn tại ít nhất một số không lớn hơn 2.
Không mất tính tổng quát, ta giả sử a là số lớn nhất, tức \(a\ge b\ge c\ge d\)
\(1=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{4}{a^2}\Rightarrow a^2\ge4\Rightarrow a\ge2\) (Vì a > 0)
Mà \(a\le2\) nên a = 2
\(\Rightarrow\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=\frac{3}{4}\)
Vì \(b\ge c\ge d\) nên \(\frac{3}{4}=\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}\ge\frac{3}{b^2}\Rightarrow b^2\ge4\Leftrightarrow b\ge2\) (vì b > 0)
Vậy b = 2
\(\Rightarrow\frac{1}{c^2}+\frac{1}{d^2}=\frac{1}{2}\)
Nếu \(c=1\) thì \(\frac{1}{c^2}+\frac{1}{d^2}=1+\frac{1}{d^2}>\frac{1}{2}\) (vô lý)
Vậy c = 2 => d = 2
Kết luận : (a;b;c;d) = (2;2;2;2)

Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự

BĐT Bunhiacopski:
\(P^2\le3\left(2a+2b+2c\right)=6.2021=12126\)
\(\Leftrightarrow P\le\sqrt{12126}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2021}{3}\)

Áp dụng BĐT cauchy-schwarz :
\(VT=\frac{a^4}{ab+ac+ad}+\frac{b^4}{ab+bc+bd}+\frac{c^4}{cd+ac+bc}+\frac{d^4}{ad+bd+cd}\)
\(\ge\frac{\left(a^2+b^2+c^2+d^2\right)^2}{2\left(ab+ac+ad+bc+bd+cd\right)}\)
Mà \(3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)( dễ dàng chứng minh nó bằng AM-GM)
nên \(VT\ge\frac{a^2+b^2+c^2+d^2}{3}\)
Áp dụng BĐT AM-GM: \(a^2+b^2\ge2ab;b^2+c^2\ge2bc;c^2+d^2\ge2cd;d^2+a^2\ge2ad\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge ab+bc+cd+da=1\)
do đó \(VT\ge\frac{1}{3}\)
Dấu''='' xảy ra khi \(a=b=c=d=\frac{1}{2}\)

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)
\(6\sqrt{55}\) là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa \(\sqrt{55}\)
Đặt \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\) với \(a,b\in N\)
\(\Rightarrow a+b=6\)
Xét các TH:
a = 0 => b = 6
a = 1 => b = 5
a = 2 => b = 4
a = 3 => b = 3
a = 4 => b = 2
a = 5 => b = 1
a = 6 => b = 0
Từ đó dễ dàng tìm đc x, y

Bài 3 \(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\x^2+y^2=6\end{cases}}\)
\(\hept{\begin{cases}\left(x+y\right)+xy=2+3\sqrt{2}\\\left(x+y\right)^2-2xy=6\end{cases}}\)
\(\hept{\begin{cases}S+P=2+3\sqrt{2}\left(1\right)\\S^2-2P=6\left(2\right)\end{cases}}\)
Từ (1)\(\Rightarrow P=2+3\sqrt{2}-S\)Thế P vào (2) rồi giải tiếp nhé. Mình lười lắm ^.^
không biết làm huhu