Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Z_L=\omega L=100\Omega\)
C thay đổi để \(U_{Cmax}\) khi \(Z_C=\frac{R^2+Z_L^2}{Z_L}=\frac{100^2+100^2}{100}=200\Omega\)
\(\Rightarrow C=\frac{1}{Z_C\omega}=\frac{10^{-4}}{2\pi}\)(F)
Ta lấy \(U_R=1\)
\(\Rightarrow U_L=2\), \(U_C=1\)
\(\tan\varphi=\frac{U_L-U_C}{U_R}=\frac{2-1}{1}=1\)
\(\Rightarrow\varphi=\frac{\pi}{4}\)
Vậy u sớm pha hơn i là \(\frac{\pi}{4}\), hay i trễ pha với u là \(\frac{\pi}{4}\)
\(Z_C=\frac{1}{\omega C}=100\Omega\)
L thay đổi để \(U_{Lmax}\) khi \(Z_L=\frac{R^2+Z_C^2}{Z_C}=200\Omega\)
\(\Rightarrow L=\frac{Z_L}{\omega}=\frac{2}{\pi}\)(H)
tan \(\varphi\)=1=\(\frac{Z_C-Z_L}{R}\Rightarrow\)ZC=R+\(\omega\)L=125
CHỌN A
Cho mình hỏi là sao phi lại bằng 1 vậy. Giải thích mình tí với
\(Z_L=140\Omega\)
\(Z_L=100\Omega\)
R thay đổi để P mạch cực đại khi \(R+r=\left|Z_L-Z_C\right|\Leftrightarrow R+30=\left|140-100\right|\Leftrightarrow R=10\Omega\)
Bonus: \(P_{max}=\frac{U^2}{2\left(R+r\right)}=\frac{100^2}{2\left(10+30\right)}=125W\)
\(Z_C=\frac{1}{\omega C}=200\Omega\)
\(I_0=\frac{U_0}{Z_C}=\frac{100}{200}=0,5\)
Mạch điện chỉ có tụ C nên dòng điện sớm pha \(\frac{\pi}{2}\) so với u
\(\Rightarrow\varphi_i=\varphi_u+\frac{\pi}{2}=0\)
Vậy \(i=0,5\cos\left(100\pi t\right)\left(A\right)\)
\(Z_L=100\Omega\)
\(Z_C=200\Omega\)
Để hiệu điện thế hai đầu mạch nhanh pha \(\pi/2\) so với hiệu điện thế hai bản tụ thì u cùng pha với i, suy ra xảy ra cộng hưởng.
\(\Rightarrow Z_{Cb}=Z_L=100\Omega\)
\(Z_{Cb}< Z_C\) nên ta cần ghép song song C' với C (giống như cách ghép điện trở)
\(\dfrac{1}{Z_{Cb}}=\dfrac{1}{Z_C}+\dfrac{1}{Z_{C'}}\Rightarrow \dfrac{1}{100}=\dfrac{1}{200}+\dfrac{1}{Z_{C'}}\)
\(\Rightarrow Z_{C'}=200\Omega\)
\(\Rightarrow C'=\dfrac{10^{-4}}{2\pi}\)