Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Điểu chỉnh điện dung C của tụ thấy C = C1 và C = C2 thì có cùng giá trị hiệu dụng của tụ điện \(U_{C1} = U_{C2}\).
Khi đó để \(U_{Cmax}\) thì \(C=C_0 = \frac{C_1+C_2}{2}\)
Chọn đáp án.D.
R1 + R2 = U2/P => U=120 V
R1R2 =(ZL-ZC)2=5184
Cos$1 = R1/(R12+R1R2)0.5=0.6
Cos$2=R2/(R22+R1R2)0.5=0.8
Chú ý trong mạch dao động \(i_1\perp u_1;i_2\perp u_2\)
Mặt khác ta có độ lệch pha giữa hai \(i_1;i_2\):\(t_2-t_1=\frac{\pi}{2}\sqrt{LC}=\frac{T}{4}\Rightarrow\Delta\varphi=\frac{T}{4}.\frac{2\pi}{T}=\frac{\pi}{2}\)
=> \(i_1\perp i_2\)
i i u u 1 1 2 2
Nhìn vào đường tròn ta thấy \(i_1\perp i_2,u_1\perp u_2\); \(i_1\) ngược pha \(u_2\) và ngược lại.
\(\frac{i_1^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{i^2_2}{I_0^2}=1;\frac{i_1^2}{I^2_0}+\frac{u^2_2}{U_0^2}=1;\frac{i_2^2}{I^2_0}+\frac{u^2_1}{U_0^2}=1;\)
\(U_0=\frac{I_0}{\omega}\Rightarrow I_0=\omega\sqrt{U_0}=\frac{1}{\sqrt{LC}}\sqrt{U_0}\)
Dựa vào các phương trình trên ta thấy chỉ có đáp án D là sai.
Bạn xem lại đề có chính xác không nhé.
một câu nói của thầy thôi mà thu hút đc 14 cái tick rồi kìa