Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào phương trình sóng => \(\lambda = 2 \pi (m), f = 50Hz\)
Tốc độ truyền sóng là \(v = \lambda.f=2\pi50= 100\pi (m/s)\)
Tốc độ cực đại của phần tử vật chất môi trường là \(v_{max}= A.w=3.100\pi (m/s)\)
\(\Rightarrow \frac{v}{v_{max}} = \frac{100\pi}{3.100\pi}=\frac{1}{3} \)
Theo công thức liên hệ chiều dài day và số bụng sóng ta có $2,4=8.\dfrac{\lambda}{2} \Rightarrow \lambda =0,6m=60 cm$
Công thức tính biên độ tại một điểm bất kì trên sợi dây cách nút gần nhất một khoảng là d đang có sóng dừng với biên độ tại bụng là 2A:
$a=2A \cos \left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right).$
Gọi khoảng cách từ A tới nút gần nhất là d thì do $\dfrac{\lambda}{4}<20$ nên ta có B cách nút gần nhất với nó một khoảng 10-d.
$| a_A-a_B |=2A |\left(\dfrac{2 \pi d}{\lambda} +\dfrac{\pi }{2} \right)-\left(\dfrac{2 \pi \left(10-d\right)}{\lambda} +\dfrac{\pi }{2} \right) |$
$=4A |\sin \left(\dfrac{10 \pi }{\lambda}+\dfrac{\pi }{2} \right) | |\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |.$
Biểu thức trên lớn nhất khi $|\sin \left(\dfrac{\pi \left(2x-10\right)}{\lambda}\right) |$ lớn nhất, tức là bằng 1.
Thay số ta có đáp án D
a 30
\(\omega =4\pi(rad/s)\)
\(|a|\le160\sqrt 3\) ứng với phần gạch đỏ trên hình, thời gian 1/3T ứng với véc tơ quay 1 góc 1200,.
Do vậy, mỗi một góc nhỏ là 300
\(\Rightarrow a_{max}=\dfrac{a}{\sin 30^0}=2a=320\sqrt 3(cm/s) \)
\(\Rightarrow A = \dfrac{a_{max}}{\omega^2}=2\sqrt 3(cm)\)
Cơ năng: \(W=\dfrac{1}{2}kA^2\Rightarrow k=\dfrac{2W}{A^2}=\dfrac{0,004}{(0,02\sqrt 3)^2}=...\)
Lập hai pt độc lập với thời gian:
\(A^2=x_1^2+\left(\frac{v_1}{\omega}\right)^2\)
\(A^2=x_2^2+\left(\frac{v_2}{\omega}\right)^2\)
cho hai VP bằng nhau, giải pt được ω=20 (rad/s)
Thay vào 1 trong 2 pt đầu được A=6(cm)
Chúc bạn học tốt! :D
Do E và B biến thiên cùng pha nên, khi cảm ứng từ có độ lớn B0/2 thì điện trường E cũng có độ lớn E0/2.
Bài toán trở thành tính thời gian ngắn nhất để cường độ điện trường có độ lớn E0/2 đang tăng đến độ lớn E0/2.
E M N Eo Eo/2
Từ giản đồ véc tơ quay ta dễ dang tính được thời gian đó là t = T/3
Suy ra: \(t=\dfrac{5}{3}.10^{-7}\)s
\(F_{đh}=-k.x\Rightarrow x=\dfrac{F}{k}\)
Bảo toàn cơ năng ta có:
\(\dfrac{1}{2}mv_1^2+\dfrac{1}{2}k.x_1^2=\dfrac{1}{2}mv_2^2\) (lúc sau, lực đàn hồi = 0 thì x = 0 -> thế năng bằng 0)
\(\Rightarrow mv_1^2+k.(\dfrac{F_1}{k})^2=mv_2^2\)
Chọn C nhé bạn
\(\Rightarrow v_2^2 = v_1^2+\dfrac{F_1^2}{k.m}\)
Khi C = C1 hoặc C = C2 thì I như nhau, do vậy:
\(Z_1=Z_2\Rightarrow Z_L-Z_{C1}=Z_{C2}-Z_L\Rightarrow Z_L=\dfrac{Z_{C1}+Z_{C2}}{2}=45\Omega\)
Để cường độ hiệu dụng qua R cực đại thì mạch xảy ra cộng hưởng.
\(\Rightarrow Z_C=Z_L=45\Omega\)
Chọn A.
Do thời gian biến thiên vận tốc là T/4, nếu biểu diễn vận tốc bằng véc tơ quay thì góc quay là 900 nên ta có:
\((\dfrac{-20\pi\sqrt 3}{v_0})^2+(\dfrac{-20\pi}{v_0})^2=1\)
\(\Rightarrow v_0=40\pi(cm/s)\)
\(\Rightarrow \omega = \dfrac{40\pi}{10}=4\pi(rad/s)\)
\(\Rightarrow f = 2Hz\)
Chọn B.
Trong mạch dao động thì i sớm pha hơn q là \(\frac{\pi}{2}.\)
bài này của lớp 12 hả ??
e mới lớp 9 bk rồi :)(
Mé ôi! Nếu bn hông giải được thì thôi chớ giới thiệu học lớp 9 làm gì?