![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
![](https://rs.olm.vn/images/avt/0.png?1311)
Có: \(L=CR^2=Cr^2\Rightarrow R^2=r^2=Z_LZ_C,URC=\sqrt{3U}_{Lr}\Leftrightarrow Z^2_{RC}=3Z^2_{Lr}\Leftrightarrow R^2+Z^2_C=3\left(Z^2_L+R^2\right)\)
\(\Leftrightarrow-3Z^2_L+Z^2_C=2R^2\) (*) \(R^2=Z_LZ_C\) (**)
Từ (*) và (**) có: \(Z_L=\frac{R}{\sqrt{3}};Z_C=\sqrt{3}R\Rightarrow Z=\sqrt{\left(R+r\right)^2Z^2_{LC}}=\frac{4R}{\sqrt{3}}\Rightarrow\cos\phi=\frac{R+r}{Z}=\frac{\sqrt{3}}{2}\approx0,866\)
A đúng
![](https://rs.olm.vn/images/avt/0.png?1311)
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mạch (R,L,C) có \(U_R=U_L=U_C=20V.\)
=> \(R=Z_L.\)
\(U=\sqrt{U_R^2+(U_L-U_C)^2} = 20V.\)
Khi nối tắt tụ điện thì tụ điện trở thành dây dẫn. Mạch chỉ còn (R,L) có \(R=Z_L=> U_R=U_L.\)
Lại có U = 20 V = const => \(\sqrt{U_R^2+U_L^2} = 20=> U_R=U_L = 10\sqrt{2}.\)
Đáp án B. \(10\sqrt{2}V.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Từ dữ kiện đề bài ta suy ra cuộn dây có điện trở thuần, với loại bài toán liên quan đến độ lệch pha ta nên vẽ giản đồ véc-tơ:
Ta có: $\widehat{\vec{MB}; \vec{AM}}=60^0$
Mặt khác $\begin{cases} \widehat{\vec{AB};\vec{AM}}=30^0 =\dfrac{1}{2}\widehat{\vec{MB}; \vec{AM}} \\ \widehat{\vec{MB}; \vec{AM}}= \widehat{MAB}+ \widehat{ABM} \end{cases}$
Suy ra $\Delta MAB$ cân tại $M$
Khi đó:
$U_r+U_r=U_{U_{AB}}. \cos 30^0$
Do: $U_r=U_R \cos 60^0$ nên:
$U_R=U_{AM}=\dfrac{U_{AB}\cos 30^0}{1+ \cos 60^0}=80 \sqrt{3} V$
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nên gửi mỗi câu hỏi một bài thôi để mọi người tiện trao đổi.
1. \(Z_L=200\sqrt{3}\Omega\), \(Z_C=100\sqrt{3}\Omega\)
Suy ra biểu thức của i: \(i=1,1\sqrt{2}\cos\left(100\pi t-\frac{\pi}{3}\right)A\)
Công suất tức thời: p = u.i
Để điện áp sinh công dương thì p > 0, suy ra u và i cùng dấu.
Biểu diễn vị trí tương đối của u và i bằng véc tơ quay ta có:
u u i i 120° 120°
Như vậy, trong 1 chu kì, để u, i cùng dấu thì véc tơ u phải quét 2 góc như hình vẽ.
Tổng góc quét: 2.120 = 2400
Thời gian: \(t=\frac{240}{360}.T=\frac{2}{3}.\frac{2\pi}{100\pi}=\frac{1}{75}s\)
2. Khi nối tắt 2 đầu tụ điện thì cường độ dòng điện hiệu dụng không đổi \(\Rightarrow Z_1=Z_2\Leftrightarrow Z_C-Z_L=Z_L\Leftrightarrow Z_C=2Z_L\)
\(U_C=1,2U_d\Leftrightarrow Z_C=2Z_d\Leftrightarrow Z_C=2\sqrt{R^2+Z_L^2}\)
\(\Leftrightarrow2Z_L=\sqrt{R^2+Z_L^2}\Leftrightarrow R=\sqrt{3}Z_L\)
Khi bỏ tụ C thì cường độ dòng điện của mạch là: \(I=\frac{U}{Z_d}=\frac{U}{\sqrt{R^2+Z_L^2}}=\frac{220}{\sqrt{3.Z_L^2+Z_L^2}}=0,5\)
\(\Rightarrow Z_L=220\Omega\)