Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(U_{RC}=const=U\) khi \(Z_{L1}=2Z_C=R\)
Mặt khác L thay đổi để : \(U_{Lmax}:U_{Lmax}=\frac{U\sqrt{R^2+Z^2_C}}{R}=\frac{U\sqrt{2^2+1}}{2}=\frac{U\sqrt{5}}{2}\)
\(\Rightarrow chọn.D\)
+,có C=C1=>U_R=\frac{U.R}{\sqrt{R^2+(Zl-ZC1)^2}}
+,U R ko đổi =>Zl=ZC1
+,có c=C1/2=>ZC=2ZC1
=>U(AN)=U(RL)=\frac{U\sqrt{r^2+Z^2l}}{\sqrt{R^2+(Zl-2Z^2C1)}}=u=200V
Mạch chỉ có điện trở thuần thì u cùng pha với i.
Nếu \(u=U_0\cos\left(\omega t+\varphi\right)\)
Thì: \(i=I_0\cos\left(\omega t+\varphi\right)\)
\(\Rightarrow\frac{u}{U_0}=\frac{i}{I_0}\)
\(\Rightarrow\frac{u^2}{U_0^2}+\frac{i^2}{I_0^2}=1\) là sai.
Chọn đáp án A
+ Vì mạch chỉ có L nên: i 2 I 0 2 + u 2 U 0 2 = 1 ⇒ u = U 0 1 − i I 0 2 = 50 3 V
Mạch chỉ gồm tụ điện và điện trở nên
\(U_C=U_{AB}.\sin\alpha=50\sqrt{3}V\)
đáp án A
\(Z_L=\omega L=100\Omega\)
\(I_0=\frac{U_0}{Z_L}=\frac{100\sqrt{2}}{100}=\sqrt{2}\)(A)
Dòng điện i trễ pha \(\frac{\pi}{2}\) so với u nên:
\(i=\sqrt{2}\cos\left(100t-\frac{\pi}{2}\right)\)(A)
Do \(u_L\) vuông pha với \(i\)nên \(\left(\frac{u}{U_0}\right)^2+\left(\frac{i}{I_0}\right)^2=1\)
Khi u cực đại thì \(u=U_0\), thế vào biểu thức trên ta tìm đc i = 0.
Chọn đáp án A
+ Vì mạch chỉ có L nên: