Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Sử dụng công thức tính độ lệch pha giữa u và i
Cách giải:
Tổng trở của mạch: \(Z=\frac{U}{I}=\frac{240}{\sqrt{3}}=80\sqrt{3}\left(\Omega\right)\)
\(Z_{MB}=\frac{80\sqrt{3}}{\sqrt{3}}=80\Omega\)
Ta có giản đồ véc tơ theo Z như sau:
i R Z Z Z r Z C AN L MB Z 80 80 80√3 80√2 45° 45° O
Từ giản đồ véc tơ ta có: \(Z_{AN}=80\sqrt{2}\)
Suy ra \(Z_C=80\)
Suy ra tam giác \(ORZ_{AN}\) vuông cân
\(\Rightarrow Z_LZ_{AN}Z_{MB}\) cũng vuông câ
\(\Rightarrow Z_L=80\cos45^0=40\sqrt{2}\)
Từ đó suy ra L
Ô tô chuyển động có giá tốc nên trong hệ quy chiếu ô tô thì vật chịu một gia tốc bằng nhưng ngược hướng với \(a=\frac{\sqrt{3}}{3}g\)
Tại vị trí cân bằng thì vật nghiêng một góc
\(\tan\alpha=\frac{a}{9}=\frac{\sqrt{3}}{3}\)
\(\alpha=90^o\)
Khi kéo nghiêng dây góc \(39^o\) thì các biên độ có thể là \(9^o\) hoặc \(69^o\) (góc quá lớn có thể sẽ không dao động điều hòa)
Tính trong góc biên độ nhỏ thì biên độ cong là
\(\text{A=α0.l=0,157m(αtínhtheorad)}\)
Ô tô chuyển động có giá tốc nên trong hệ quy chiếu ô tô thì vật chịu một gia tốc bằng nhưng ngược hướng với a=3√3ga=33g
Tại vị trí cân bằng thì vật nghiêng một góc
tanα=ag=3√3tanα=ag=33
α=30oα=30o
Khi kéo nghiêng dây góc 39o39o thì các biên độ có thể là 9o9o hoặc 69o69o (góc quá lớn có thể sẽ không dao động điều hòa)
Tính trong góc biên độ nhỏ thì biên độ cong là
A=α0.l=0,157m(αtínhtheorad)
\(U_C=I.Z_C=\dfrac{U.Z_C}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}.\omega C}=\dfrac{U}{\sqrt{\omega^2.C^2.R^2+(\omega^2.LC-1)^2}}\)
Suy ra khi \(\omega=0\) thì \(U_C=U\) \(\Rightarrow (1)\) là \(U_C\)
\(U_L=I.Z_L=\dfrac{U.Z_L}{\sqrt{R^2+(Z_L-Z_C)^2}}=\dfrac{U.\omega L}{\sqrt{R^2+(\omega.L-\dfrac{1}{\omega C})^2}}=\dfrac{U.L}{\sqrt{\dfrac{R^2}{\omega^2}+(L-\dfrac{1}{\omega^2 C})^2}}\)(chia cả tử và mẫu cho \(\omega\))
Suy ra khi \(\omega\rightarrow \infty\) thì \(U_L\rightarrow U\) \(\Rightarrow (3) \) là \(U_L\)
Vậy chọn \(U_C,U_R,U_L\)
Suất điện động hiệu dụng là \(E = \dfrac{{{E_0}}}{{\sqrt 2 }} = \dfrac{{220\sqrt 2 }}{{\sqrt 2 }} = 220V\).
1Bình chọn giảm
Trong trường hợp ban đầu giotj thủy ngân nằm chính giữa nên thể tích 2 phần bằng nhau
Tỉ số này không đổi do khí vẫn được giữ cố định trong bình.
Khi cùng tăng nhiệt độ của 2 bình lên 1 lượng nhỏ thì tỉ số giua 2 nhiệt độ thay đổi dẫn đến tỉ lệ thể tích thay đổi. Bên nào thể tích nhỏ hơn thì là do giotj thủy ngân dịch về phía đó.
Tỷ số giua 2 nhiệt độ phụ thuộc (T1 > T2 hay không)
Nêú biết bên nào có nhiệt độ cao hơn sẽ biết thủy ngân dịch về bên nào
Ta có: \(\dfrac{\pi x}{4}=\dfrac{2\pi x}{\lambda}\Rightarrow \lambda = 8cm\)
Chu kì: \(T=1s\)
Tốc độ truyền sóng: \(v=\dfrac{\lambda}{T}=8cm/s\)
Chính là câu số 2 mình đã trả lời ở đây rùi bạn nhé: Hỏi đáp - Trao đổi kiến thức
Đáp án A
Phương pháp: Cường độ dòng điện hiệu dụng I = U/Z
Đoạn mạch gồm RLC mắc nối tiếp: I = U R 2 + Z L − Z C 2 ( 1 )
Khi nối tắt tụ: I = U R 2 + Z L 2
Từ (1) và (2) ⇒ U R 2 + Z L − Z C 2 = U R 2 + Z L 2 ⇒ Z L − Z C = Z L ( l o a i ) Z L − Z C = − Z L
⇒ 2 Z L = Z C ⇔ 2 ω L = 1 ω C ⇒ ω 2 L C = 0,5
Chọn đáp án D