Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Đặt \(u=\sqrt{x-3}\Rightarrow x=u^2+3\)
\(I_1=\int (2x-3)\sqrt{x-3}dx=\int (2u^2+3)ud(u^2+3)=2\int (2u^2+3)u^2du\)
\(\Leftrightarrow I_1=4\int u^4du+6\int u^2du=\frac{4u^5}{5}+2u^3+c\)
b)
\(I_2=\int \frac{xdx}{\sqrt{(x^2+1)^3}}=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{(x^2+1)^2}}\)
Đặt \(u=\sqrt{x^2+1}\). Khi đó:
\(I_2=\frac{1}{2}\int \frac{d(u^2)}{u^3}=\int \frac{udu}{u^3}=\int \frac{du}{u^2}=\frac{-1}{u}+c\)
c)
\(I_3=\int \frac{e^xdx}{e^x+e^{-x}}=\int \frac{e^{2x}dx}{e^{2x}+1}=\frac{1}{2}\int\frac{d(e^{2x}+1)}{e^{2x}+1}\)
\(\Leftrightarrow I_3=\frac{1}{3}\ln |e^{2x}+1|+c=\frac{1}{2}\ln|u|+c\)
d)
\(I_4=\int \frac{dx}{\sin x-\sin a}=\int \frac{dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}\)
\(\Leftrightarrow I_4=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x+a}{2}-\frac{x-a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )\sin \left ( \frac{x-a}{2} \right )}=\frac{1}{\cos a}\int \frac{\cos \left ( \frac{x-a}{2} \right )dx}{2\sin \left ( \frac{x-a}{2} \right )}+\frac{1}{\cos a}\int \frac{\sin \left ( \frac{x+a}{2} \right )dx}{2\cos \left ( \frac{x+a}{2} \right )}\)
\(\Leftrightarrow I_4=\frac{1}{\cos a}\left ( \ln |\sin \frac{x-a}{2}|-\ln |\cos \frac{x+a}{2}| \right )+c\)
e)
Đặt \(t=\sqrt{x}\Rightarrow x=t^2\)
\(I_5=\int t\sin td(t^2)=2\int t^2\sin tdt\)
Đặt \(\left\{\begin{matrix} u=t^2\\ dv=\sin tdt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=2tdt\\ v=-\cos t\end{matrix}\right.\)
\(\Rightarrow I_5=-2t^2\cos t+4\int t\cos tdt\)
Tiếp tục nguyên hàm từng phần \(\Rightarrow \int t\cos tdt=t\sin t+\cos t+c\)
\(\Rightarrow I_5=-2t^2\cos t+4t\sin t+4\cos t+c\)
Nhìn 2 vế của hàm số thì có vẻ ta cần phân tích biểu thức vế trái về dạng \(\left[f\left(x\right).u\left(x\right)\right]'=f\left(x\right).u'\left(x\right)+u\left(x\right).f'\left(x\right)\), ta cần tìm thằng \(u\left(x\right)\) này
Biến đổi 1 chút xíu: \(\frac{\left[f\left(x\right).u\left(x\right)\right]'}{u\left(x\right)}=\frac{u'\left(x\right)}{u\left(x\right)}f\left(x\right)+f'\left(x\right)\) (1) hay vào bài toán:
\(\left(\frac{x+2}{x+1}\right)f\left(x\right)+f'\left(x\right)=\frac{e^x}{x+1}\) (2)
Nhìn (1) và (2) thì rõ ràng ta thấy \(\frac{u'\left(x\right)}{u\left(x\right)}=\frac{x+2}{x+1}=1+\frac{1}{x+1}\)
Lấy nguyên hàm 2 vế:
\(ln\left(u\left(x\right)\right)=\int\left(1+\frac{1}{x+1}\right)dx=x+ln\left(x+1\right)\)
\(\Rightarrow u\left(x\right)=e^{x+ln\left(x+1\right)}=e^x.e^{ln\left(x+1\right)}=e^x.\left(x+1\right)\)
Vậy ta đã tìm xong hàm \(u\left(x\right)\)
Vế trái bây giờ cần biến đổi về dạng:
\(\left[f\left(x\right).e^x\left(x+1\right)\right]'=e^x\left(x+2\right).f\left(x\right)+f'\left(x\right).e^x\left(x+1\right).f'\left(x\right)\)
Để tạo thành điều này, ta cần nhân \(e^x\) vào 2 vế của biểu thức ban đầu:
\(e^x\left(x+2\right)f\left(x\right)+e^x\left(x+1\right)f'\left(x\right)=e^{2x}\)
\(\Leftrightarrow\left[f\left(x\right).e^x.\left(x+1\right)\right]'=e^{2x}\)
Lấy nguyên hàm 2 vế:
\(f\left(x\right).e^x\left(x+1\right)=\int e^{2x}dx=\frac{1}{2}e^{2x}+C\)
Do \(f\left(0\right)=\frac{1}{2}\Rightarrow f\left(0\right).e^0=\frac{1}{2}e^0+C\Rightarrow C=0\)
Vậy \(f\left(x\right).e^x\left(x+1\right)=\frac{1}{2}e^{2x}\Rightarrow f\left(x\right)=\frac{1}{2}\frac{e^{2x}}{e^x\left(x+1\right)}=\frac{e^x}{2\left(x+1\right)}\)
\(\Rightarrow f\left(2\right)=\frac{e^2}{2\left(2+1\right)}=\frac{e^2}{6}\)
1) TXĐ: \(D=R\)
2) Sự biến thiên
Giới hạn hàm số tại vô cực
\(\lim\limits_{x\rightarrow+\infty}y\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(x^2-4x+3\right)=+\infty\)
\(\lim\limits_{x\rightarrow-\infty}y\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2-4x+3\right)=+\infty\)
Chiều biến thiên
\(y'\left(x\right)=2x-4\)
\(y'\left(x\right)=0\)\(\Leftrightarrow x=2\)
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
Nhận xét: hàm số nghịch biên trên khoảng \(\left(-\infty;2\right)\) và đồng biến trên khoảng \(\left(2;+\infty\right)\).
Hàm số đạt cực tiểu tại \(x=2\) với \(y_{CT}=-1\).
- Đồ thị hàm số
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
x y O
b)
1) Tập xác định: \(D=R\)
2) Sự biến thiên
\(y'\left(x\right)=-3-2x\);\(y'\left(x\right)=0\Leftrightarrow x=\dfrac{-3}{2}\).
Bảng biến thiên:
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
Nhận xét:
Hàm số đồng biến trên \(\left(-\infty;\dfrac{-3}{2}\right)\) và nghịch biến trên \(\left(-\dfrac{3}{2};+\infty\right)\).
Hàm số đạt cực đại tại \(x=-\dfrac{3}{2}\) với \(y_{CĐ}=\dfrac{13}{4}\).
3) Đồ thi hàm số
Giao Ox: \(y=0\Rightarrow2-3x-x^2=0\)\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{-3+\sqrt{17}}{2}\\x_2=\dfrac{-3-\sqrt{17}}{2}\end{matrix}\right.\)
\(A\left(\dfrac{-3-\sqrt{17}}{2};0\right);B\left(\dfrac{-3+\sqrt{17}}{2};0\right)\).
Giao Oy: \(x=0\Rightarrow y=2\)
\(C\left(0;2\right)\).
TenAnh1
TenAnh1
B = (-3.8, -6.16)
B = (-3.8, -6.16)
B = (-3.8, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
C = (11.56, -6.16)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
D = (-4.16, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
E = (11.2, -5.98)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
F = (-4.2, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
G = (11.16, -5.86)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
H = (-4.34, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
I = (11.02, -5.96)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
J = (-4.34, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
K = (11.02, -5.84)
x y A B O
Không phải tất cả các câu đều dùng nguyên hàm từng phần được đâu nhé, 1 số câu phải dùng đổi biến, đặc biệt những câu liên quan đến căn thức thì đừng dại mà nguyên hàm từng phần (vì càng nguyên hàm từng phần biểu thức nó càng phình to ra chứ không thu gọn lại, vĩnh viễn không ra kết quả đâu)
a/ \(I=\int\frac{9x^2}{\sqrt{1-x^3}}dx\)
Đặt \(u=\sqrt{1-x^3}\Rightarrow u^2=1-x^3\Rightarrow2u.du=-3x^2dx\)
\(\Rightarrow9x^2dx=-6udu\)
\(\Rightarrow I=\int\frac{-6u.du}{u}=-6\int du=-6u+C=-6\sqrt{1-x^3}+C\)
b/ Đặt \(u=1+\sqrt{x}\Rightarrow du=\frac{dx}{2\sqrt{x}}\Rightarrow2du=\frac{dx}{\sqrt{x}}\)
\(\Rightarrow I=\int\frac{2du}{u^3}=2\int u^{-3}du=-u^{-2}+C=-\frac{1}{u^2}+C=-\frac{1}{\left(1+\sqrt{x}\right)^2}+C\)
c/ Đặt \(u=\sqrt{2x+3}\Rightarrow u^2=2x\Rightarrow\left\{{}\begin{matrix}x=\frac{u^2}{2}\\dx=u.du\end{matrix}\right.\)
\(\Rightarrow I=\int\frac{u^2.u.du}{2u}=\frac{1}{2}\int u^2du=\frac{1}{6}u^3+C=\frac{1}{6}\sqrt{\left(2x+3\right)^3}+C\)
d/ Đặt \(u=\sqrt{1+e^x}\Rightarrow u^2-1=e^x\Rightarrow2u.du=e^xdx\)
\(\Rightarrow I=\int\frac{\left(u^2-1\right).2u.du}{u}=2\int\left(u^2-1\right)du=\frac{2}{3}u^3-2u+C\)
\(=\frac{2}{3}\sqrt{\left(1+e^x\right)^2}-2\sqrt{1+e^x}+C\)
e/ Đặt \(u=\sqrt[3]{1+lnx}\Rightarrow u^3=1+lnx\Rightarrow3u^2du=\frac{dx}{x}\)
\(\Rightarrow I=\int u.3u^2du=3\int u^3du=\frac{3}{4}u^4+C=\frac{3}{4}\sqrt[3]{\left(1+lnx\right)^4}+C\)
f/ \(I=\int cosx.sin^3xdx\)
Đặt \(u=sinx\Rightarrow du=cosxdx\)
\(\Rightarrow I=\int u^3du=\frac{1}{4}u^4+C=\frac{1}{4}sin^4x+C\)
Chọn B