K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7

Bạn ơi, vui lòng gửi lại ảnh nhé! Bạn chụp nghiêng quá, mình không nhìn được gì.

6 tháng 7

ôi mắt tôi 😣

Xét ΔAHC vuông tại H có \(\sin C=\frac{AH}{AC}\)

=>\(\frac{AH}{10}=\sin30=\frac12\)

=>\(AH=\frac{10}{2}=5\left(\operatorname{cm}\right)\)

ΔAHC vuông tại H

=>\(HA^2+HC^2=CA^2\)

=>\(HC^2=10^2-5^2=100-25=75=\left(5\sqrt3\right)^2\)

=>\(HC=5\sqrt3\left(\operatorname{cm}\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(HB\cdot HC=HA^2\)

=>\(HB=\frac{5^2}{5\sqrt3}=\frac{5}{\sqrt3}=\frac{5\sqrt3}{3}\) (cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=5^2+\left(\frac{5\sqrt3}{3}\right)^2=25+\frac{25}{3}=\frac{100}{3}\)

=>\(AB=\sqrt{\frac{100}{3}}=\frac{10}{\sqrt3}\) (cm)

15:

a: Gọi giá niêm yết của mỗi cái quạt là x(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là y(đồng)

(ĐIều kiện: x>0; y>0)

Giá của mỗi cái quạt sau khi giảm giá là: \(x\left(1-10\%\right)=0,9x\) (đồng)

Giá của mỗi cái bàn ủi sau khi giảm giá là: \(y\left(1-25\%\right)=0,75\) y(đồng)

Số tiền phải trả nếu mua theo giá niêm yết là 2175000 nên x+y=2175000(1)

Số tiền phải trả nếu mua theo giá đã giảm là 1717500 nên 0,9x+0,75y=1717500(2)

Từ (1),(2) ta có hệ phương trình:

\(\begin{cases}x+y=2175000\\ 0,9x+0,75y=1717500\end{cases}\Rightarrow\begin{cases}0,9x+0,9y=1957500\\ 0,9x+0,75y=1717500\end{cases}\)

=>\(\begin{cases}0,9x+0,9y-0,9x-0,75y=1957500-1717500=240000\\ x+y=2175000\end{cases}\)

=>\(\begin{cases}0,15y=240000\\ x+y=2175000\end{cases}\Rightarrow\begin{cases}y=1600000\\ x=2175000-1600000=575000\end{cases}\) (nhận)

vậy: giá niêm yết của mỗi cái quạt là 575000(đồng), giá niêm yết của mỗi cái bàn ủi hơi nước là 1600000(đồng)

b: Giá của mỗi cái quạt sau khi giảm giá là:

\(575000\cdot0,9=517500\) (đồng)

Giá vốn của mỗi cái quạt là:

\(517500\cdot\frac{100}{115}=450000\) (đồng)

giá của mỗi cái bàn ủi hơi nước sau khi giảm giá là:

\(1600000\cdot75\%=1200000\left(đồng\right)\)

Giá vốn của mỗi cái bàn ủi là:

\(1200000\cdot\frac{100}{120}=1000000\) (đồng)

Bài 12: Gọi số cần tìm có dạng là \(\overline{ab}\)

Tổng của hai chữ số là 12 nên a+b=12

Nếu viết theo thứ tự ngược lại thì số mới lớn hơn số cũ là 18 đơn vị nên ta có:

\(\overline{ba}-\overline{ab}=18\)

=>10b+a-10a-b=18

=>-9a+9b=18

=>a-b=-2

mà a+b=12

nên \(a=\frac{-2+12}{2}=\frac{10}{2}=5;b=12-5=7\)

vậy: Số cần tìm là 57

4 giờ trước (20:33)

Bài 4:

a: Chiều cao của tòa nhà là:

\(25\cdot\tan36\) ≃18,2(m)

b: Khoảng cách từ chỗ anh ta đứng đến tòa nhà khi đó là:

18,2:tan32≃29,1(m)

Bài 3:

Kẻ BH⊥AC tại H

Xét ΔAHB vuông tại H có \(\sin A=\frac{BH}{AB}\)

=>\(BH=AB\cdot\sin A\)

Xét ΔABC có BH là đường cao

nên \(S_{ABC}=\frac12\cdot BH\cdot AC=\frac12\cdot AB\cdot AC\cdot\sin BAC\)

Bài 2:

a: \(A=\frac{\sin45^0\cdot cos45^0}{\cot60^0}=\frac{\frac{\sqrt2}{2}\cdot\frac{\sqrt2}{2}}{\tan30}=\frac12:\frac{\sqrt3}{3}=\frac12\cdot\frac{3}{\sqrt3}=\frac{3}{2\sqrt3}=\frac{\sqrt3}{2}\)

b: \(B=\frac{\sin70^0\cdot\tan40^0}{cos20^0\cdot\cot50^0}=\frac{\sin70^0\cdot\tan40^0}{\sin70^0\cdot\tan40^0}=1\)

Bài 1:

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2=10^2-8^2=36=6^2\)

=>AB=6(cm)

Xét ΔABC vuông tại A có

\(\sin B=\frac{AC}{BC}=\frac{8}{10}=\frac45\)

\(cosB=\frac{BA}{BC}=\frac{6}{10}=\frac35\)

\(\tan B=\frac{AC}{BA}=\frac86=\frac43\)

\(\cot B=\frac{AB}{AC}=\frac68=\frac34\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=36+64=100=10^2\)

=>BC=10(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

Xét ΔABD vuông tại A có AK là đường cao

nên \(BK\cdot BD=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BK\cdot BD\)

c: \(BH\cdot BC=BD\cdot BK\)

=>\(\frac{BH}{BK}=\frac{BD}{BC}\)

=>\(\frac{BH}{BD}=\frac{BK}{BC}\)

Xét ΔBHK và ΔBDC có

\(\frac{BH}{BD}=\frac{BK}{BC}\)

góc HBK chung

Do đó: ΔBHK~ΔBDC
=>\(\hat{BKH}=\hat{BCD}=\hat{ACB}\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=10^2-6^2=64=8^2\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(\sin C=\frac{AB}{BC}=\frac{6}{10}=\frac35\)

nên \(\hat{C}\) ≃37 độ

ΔABC vuông tại A

=>\(\hat{B}+\hat{C}=90^0\)

=>\(\hat{B}=90^0-37^0=53^0\)

b: Xét ΔAHB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\) (2)

Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)

c: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

\(AE\cdot AB=AH^2\)

=>\(AE=\frac{AH^2}{AB}\)

\(AF\cdot AC=AH^2\)

=>\(AF=\frac{AH^2}{AC}\)

Xét tứ giác AEHF có \(\hat{AEH}=\hat{AFH}=\hat{FAE}=90^0\)

nên AEHF là hình chữ nhật

=>\(S_{AEHF}=AE\cdot AF=\frac{AH^2}{AB}\cdot\frac{AH^2}{AC}=\frac{AH^4}{AH\cdot BC}=\frac{AH^3}{BC}\)