K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(2x^2+2x+3\)

\(=2\left(x^2+x+\frac32\right)\)

\(=2\left(x^2+x+\frac14+\frac54\right)\)

\(=2\left(x+\frac12\right)^2+\frac52\ge\frac52\forall x\)

=>\(\frac{3}{2x^2+2x+3}\le3:\frac52=\frac65\forall x\)

Dấu '=' xảy ra khi \(x+\frac12=0\)

=>\(x=-\frac12\)

b: \(-x^2+2x-2\)

\(=-\left(x^2-2x+2\right)\)

\(=-\left(x^2-2x+1+1\right)\)

\(=-\left(x-1\right)^2-1\le-1\forall x\)

=>\(\frac{1}{-x^2+2x-2}\ge\frac{1}{-1}=-1\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

c: \(3x^2+4x+15\)

\(=3\left(x^2+\frac43x+5\right)\)

\(=3\left(x^2+2\cdot x\cdot\frac23+\frac49+\frac{41}{9}\right)\)

\(=3\left(x+\frac23\right)^2+\frac{41}{3}\ge\frac{41}{3}\forall x\)

=>\(\frac{5}{3x^2+4x+15}\le5:\frac{41}{3}=\frac{15}{41}\)

=>\(-\frac{5}{3x^2+4x+15}\ge-\frac{15}{41}\forall x\)

Dấu '=' xảy ra khi \(x+\frac23=0\)

=>\(x=-\frac23\)

d: \(-4x^2+8x-5\)

\(=-4\left(x^2-2x+\frac54\right)\)

\(=-4\left(x^2-2x+1+\frac14\right)\)

\(=-4\left(x-1\right)^2-1<=-1\forall x\)

=>\(\frac{2}{-4x^2+8x-5}\ge\frac{2}{-1}=-2\forall x\)

Dấu '=' xảy ra khi x-1=0

=>x=1

a: \(x^2-x+1\)

\(=x^2-x+\frac14+\frac34\)

\(=\left(x-\frac12\right)^2+\frac34\ge\frac34>0\forall x\)

b: \(x^2+x+2\)

\(=x^2+x+\frac14+\frac74\)

\(=\left(x+\frac12\right)^2+\frac74\ge\frac74>0\forall x\)

c: \(-a^2+a-3\)

\(=-\left(a^2-a+3\right)\)

\(=-\left(a^2-a+\frac14+\frac{11}{4}\right)\)

\(=-\left(a-\frac12\right)^2-\frac{11}{4}\le-\frac{11}{4}<0\forall a\)

d:Đặt \(A=\frac{3x^2-x+1}{-4x^2+2x-1}\)

\(3x^2-x+1\)

\(=3\left(x^2-\frac13x+\frac13\right)\)

\(=3\left(x^2-2\cdot x\cdot\frac16+\frac{1}{36}+\frac{11}{36}\right)\)

\(=3\left(x-\frac16\right)^2+\frac{11}{12}\ge\frac{11}{12}>0\forall x\) (1)

\(-4x^2+2x-1\)

\(=-4\left(x^2-\frac12x+\frac14\right)\)

\(=-4\left(x^2-2\cdot x\cdot\frac14+\frac{1}{16}+\frac{3}{16}\right)\)

\(=-4\left(x-\frac14\right)^2-\frac34\le-\frac34<0\forall x\) (2)

Từ (1),(2) suy ra \(\frac{3x^2-x+1}{-4x^2+2x-1}<0\forall x\)

=>A<0 với mọi x

NV
3 tháng 9

Bằng hình vẽ này thì câu hỏi ko trả lời được đâu em.

Hai tam giác vẽ chẳng chính xác gì hết, giao điểm cũng ko rõ ràng vị trí.

không giải được á


S
20 tháng 8

xét tứ giác AEHF ta có:

góc BAC = góc HEA = góc HFA = 90 độ

⇒ tứ giác AEHF là hình chữ nhật

a: \(\left(a+b\right)^2-2ab\)

\(=a^2+2ab+b^2-2ab\)

\(=a^2+b^2\)

b: \(\left(a^2+b^2\right)^2-2a^2b^2\)

\(=\left(a^2\right)^2+2\cdot a^2\cdot b^2+\left(b^2\right)^2-2a^2b^2\)

\(=a^4+b^4\)

c: \(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2\right)^2-a^2\cdot b^2+\left(b^2\right)^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4-a^2b^2+b^4\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack a^4+2a^2b^2+b^4-3a^2b^2\right\rbrack\)

\(=\left(a^2+b^2\right)\left\lbrack\left(a^2+b^2\right)^2-3a^2b^2\right\rbrack\)


a: ta có: EI⊥BF

AC⊥BF

Do đó: EI//AC

=>\(\hat{IEB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{ABC}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBE}=\hat{IEB}\)

Xét ΔKBE vuông tại K và ΔIEB vuông tại I có

BE chung

\(\hat{KBE}=\hat{IEB}\)

Do đó: ΔKBE=ΔIEB

=>EK=BI

b: Điểm D ở đâu vậy bạn?

15 tháng 8

bạn lưu ảnh rồi gửi qua file đi ạ chứ bn cóp sang thì ko hiện ảnh mất rồi

a; ABCD là hình thang cân

=>\(\hat{A}=\hat{B};\hat{C}=\hat{D}\)

\(\hat{A}+\hat{B}=\frac12\left(\hat{C}+\hat{D}\right)\)

=>\(2\cdot\hat{B}=\frac12\left(\hat{C}+\hat{C}\right)=\frac12\cdot2\cdot\hat{C}=\hat{C}\)

Ta có: AB//CD

=>\(\hat{B}+\hat{C}=180^0\)

=>\(\hat{B}+2\cdot\hat{B}=180^0\)

=>\(3\cdot\hat{B}=180^0\)

=>\(\hat{B}=60^0\)

\(\hat{C}=2\cdot\hat{B}=2\cdot60^0=120^0\)

\(\hat{D}=\hat{C}=120^0\)

\(\hat{A}=\hat{B}=60^0\)

b: ΔCAB vuông tại C

=>\(\hat{CAB}+\hat{CBA}=90^0\)

=>\(\hat{CAB}=90^0-60^0=30^0\)

Ta có: tia AC nằm giữa hai tia AD và AB

=>\(\hat{DAC}+\hat{BAC}=\hat{DAB}\)

=>\(\hat{DAC}=60^0-30^0=30^0\)

ta có: \(\hat{DAC}=\hat{BAC}\left(=30^0\right)\)

=>AC là phân giác của góc BAD

c: ta có: DC//AB

=>\(\hat{DCA}=\hat{CAB}\) (hai góc so le trong)

=>\(\hat{DCA}=30^0=\hat{DAC}\)

=>ΔDAC cân tại D

=>DC=DA

=>AD=a

Ta có: ABCD là hình thang cân

=>AD=BC

=>BC=a

Xét ΔCAB vuông tại C có \(\sin BAC=\frac{BC}{AB}\)

=>\(\frac{a}{AB}=\sin30=\frac12\)

=>AB=2a

ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CA^2=\left(2a\right)^2-a^2=3a^2\)

=>\(CA=a\sqrt3\)

Diện tích tam giác DAC là:

\(S_{DAC}=\frac12\cdot DA\cdot DC\cdot\sin ADC=\frac12\cdot a\cdot a\cdot\sin120=\frac{a^2\sqrt3}{4}\)

Diện tích tam giác ACB là:

\(S_{ACB}=\frac12\cdot CA\cdot CB=\frac12\cdot a\sqrt3\cdot a=\frac{a^2\sqrt3}{2}\)

Diện tích tam giác ABCD là:

\(S_{ABCD}=S_{DAC}+S_{CAB}=\frac{a^2\sqrt3}{4}+\frac{a^2\sqrt3}{2}=\frac{3a^2\sqrt3}{4}\)