Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác ABCD ta có ( ^B = 2^C mới được nhé)
^A + ^B + ^C + ^D = 3600
=> 1500 + ^B + ^C + ^D = 3600
=> ^B + ^C + ^D = 2100
Có ^B = 2^C
=> 2 ^C + ^C + ^D = 2100
=> 3^C + ^D = 2100
Có ^C = 2^D
=> 3 . 2^D + ^D = 2100
=> 7^D = 2100
=> ^D = 300
+) ^C = 2^D = 2.300 = 600
+) ^B = 2^C = 2.600 = 1200
b) Xét tứ giác ABCD có :
^A + ^B + (^C + ^D) = 3600
=> 2^B + ^B + 2100 = 3600
=> 3^B = 1500
=> ^B = 500
+) ^A = 2^B = 2.500 = 1000
Có ^C + ^D = 2100 => ^C = ^D = 210 : 2 = 1050
Vậy ^A = 1000,^B = 500,^C = ^D = 1050
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\widehat{A}}{1}=\frac{\widehat{B}}{2}=\frac{\widehat{C}}{3}=\frac{\widehat{D}}{4}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\frac{360^0}{10}=36^0\)
=> ^A = 360 , ^B = 720 , ^C = 1080 , ^D = 1440
d) Tự làm
a) Ta có: \(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}\)
Áp dụng t/c dãy tỉ số bằng nhau ta được:
\(\frac{\widehat{A}}{4}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{2}=\frac{\widehat{D}}{1}=\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{4+3+2+1}=\frac{360}{10}=36\)
\(\Rightarrow\widehat{A}=144^0;\widehat{B}=108^0;\widehat{C}=72^0;\widehat{D}=36^0\)
bạn để ý trong ngoăcj có +2b^2c^2 đó bạn
Vì +2b^2c^2 - 4b^2c^2 = -2b^2c^2
\(B=a^4+b^4+c^4-2a^2b^2-2a^2c^2-2b^2c^2\)
\(=\left(a^4+b^4+c^4-2a^2b^2-2a^2c^2+2b^2c^2\right)-4b^2c^2\)
\(=\left(a^2-b^2-c^2\right)-\left(2bc\right)^2\)
\(=\left(a^2-b^2-c^2-2bc\right)\left(a^2-b^2-c^2+2bc\right)\)
\(=\left[a^2-\left(b+c\right)^2\right]\left[a^2-\left(b-c\right)^2\right]\)
\(=\left(a-b-c\right)\left(a+b+c\right)\left(a-b+c\right)\left(a+b-c\right)\)
Vì a,b,c là độ dài 3 cạnh tam giác nên:
b+c>a => a-(b+c) < 0 => a-b-c < 0
a+b+c > 0
a+c>b => a+c-b > 0 => a-b+c > 0
a+b>c => a+b-c > 0
Do đó (a-b-c)(a+b+c)(a-b+c)(a+b-c) < 0 hay B<0 (đpcm)
Câu hỏi của Chi Chi - Toán lớp 8 - Học toán với OnlineMath
Hình bạn tự vẽ nha
Xét hình tứ giác ABCD có:
góc A+góc B+góc C+góc D =360 độ
Vì góc A-góc C=60 độ
=>góc C=góc A-60 độ
=>góc A+góc B+(góc A-60 độ)+góc D=360 độ
=>2.góc A+góc B+góc D=360 độ+60 độ
=>2.góc A+góc B+góc D=420 độ
Vì BI là phân giác của góc B
=>góc ABI=góc B/2
=>2.góc ABI=góc B
Vì DI là phân giác của góc D
=>góc ADI=góc D/2
=>2.góc ADI=góc D
Vì 2.góc A+góc B+góc D=420 độ
=>2.góc A+2.góc ABI+2.góc ADI=420 độ
=>2.(góc A+góc ABI+góc ADI)=420 độ
=>góc A+góc ABI+góc ADI=210 độ
Xét tứ giác ABID có:
góc A+góc ABI+góc ADI+góc BID=360 độ
mà góc A+góc ABI+góc ADI=210 độ
=>210 độ +góc BID=360 độ
=>góc BID=150 độ
Vậy góc BID =150 độ
Xét tứ giác ABCD có :
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(132^0+\widehat{B}+\widehat{C}+\widehat{D}=360^0\)
=> \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
Ta có : \(\widehat{B}=\widehat{C}-72^0\)
=> \(\widehat{C}-72^0+\widehat{C}+\widehat{D}=228^0\)
=> \(2\widehat{C}-72^0+\widehat{D}=228^0\)
Mà \(\widehat{D}=2\widehat{C}\)
=> \(2\widehat{C}-72^0+2\widehat{C}=228^0\)
=> \(4\widehat{C}=300^0\)
=> \(\widehat{C}=75^0\)(*)
Thay (*) vào \(\widehat{D}=2\widehat{C}=2\cdot75^0=150^0\)
Lại có : \(\widehat{B}+\widehat{C}+\widehat{D}=228^0\)
=> \(\widehat{B}+75^0+150^0=228^0\)
=> \(\widehat{B}=3^0\)
P/S : Góc B nhỏ thế ?
A B C D 60 90
a) Xét tam giác ACD có:
\(\widehat{DAC}=180^o-\widehat{ADC}-\widehat{ACD}=180^o-60^o-90^o=30^o\)
\(\widehat{DAB}=2.\widehat{DAC}=2.30^o=60^o\)
b) Xét hình thang ABCD
\(\widehat{CBA}=180^o-\widehat{BAD}=180^o-60^o=120^o\)
\(\widehat{BCD}=180^o-\widehat{CDA}=180^o-60^o=120^o\) ( hoặc có thể dùng ABCD là hình thang cân)