Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !

Bác google được sinh ra để làm gì, đăng nhiều vc, google có hết mà ;v
Bài 1,2,3,4 đơn giản, tự làm :v
7) \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}=\dfrac{abc}{c^3}+\dfrac{abc}{a^3}+\dfrac{abc}{b^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)=abc.\dfrac{1}{3abc}=\dfrac{1}{3}\)
P/S: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
5) ĐK: a>b>0
\(3a^2+3b^2=10ab\Leftrightarrow\left(a-3b\right)\left(3a-b\right)=0\)
Tự phân tích
Mà a>b>0=> Chọn a=3b
Thay vào
Bài 6 tương tự bài 5
Có bất mãn chỗ nào thì ib nha bạn :))

\(7.\) Xét mẫu thức \(\left(x^2+1\right)\left(x^2+4x+5\right)\), ta có:
\(x^2\ge0\Rightarrow x^2+1\ge1>0\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
\(x^2+4x+5\\ hayx^2+4x+4+1=\left(x+2\right)^2+1\\ \left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\)
\(\Rightarrow\) Luôn đúng với mọi giá trị \(x\)
Vậy biểu thức \(\frac{x^2-4}{\left(x^2+1\right)\left(x^2+4x+5\right)}+\frac{3}{2}x\) luôn xác định với mọi giá trị \(x\)

(x+y)^3=x^3+y^3+3xy(x+y)=1
=>3xy(x+y)+2=1
=>3xy(x+y)=-1?(vì x+y=1)
=>xy=-1/3=M
b) (x+y)^2=x^2+y^2+2xy=1 =>x^2+y^2=1-2xy=1-2.(-1/3)=5/3
(x^2+y^2)(x^3+y^3)=x^5+y^5 +x^2.y^3+x^3.y^2=x^5+y^5+x^2.y^2(x+y)=...(ráp số vô rồi tính ra kết quả nhé :) )

1, \(25x^2-10xy+y^2=\left(5x-y\right)^2\)
2, \(8x^3+36x^2y+54xy^2+27y^3=\left(2x+3y\right)^3\)
4, \(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
5, \(2x^3+3x^2+2x+3\)
\(=x^2\left(2x+3\right)+2x+3\)
\(=\left(x^2+1\right)\left(2x+3\right)\)
6, \(x^3z+x^2yz-x^2z^2-xyz^2\)
\(=x^3z-x^2z^2+x^2yz-xy^2\)
\(=xz\left(x^2-xz\right)+xz\left(xy-yz\right)\)
\(=xz\left[x\left(x-z\right)+y\left(x-z\right)\right]\)
\(=xz\left(x+y\right)\left(x-z\right)\)
8, \(x^3+3x^2y+3xy^2+y+y^3\)\(=\left(x+y\right)^3+y\)
9, \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
10, \(x^2-8x+12\)
\(=x^2-6x-2x+12\)
\(=x\left(x-6\right)-2\left(x-6\right)\)
\(=\left(x-2\right)\left(x-6\right)\)
Chỗ còn lại mai làm nốt nha.
Gặp chút sự cố đăng nhập nên hơi muộn, xin lỗi nha
11, \(a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)\)
\(=a^2b-a^2c+b^2c-b^2a+c^2a-c^2b\)
\(=a^2b-ab^2+abc-a^2c+b^2c-abc+ac^2-c^2b\)
\(=ab\left(a-b\right)-ac\left(a-b\right)-bc\left(a-b\right)+c^2\left(a-b\right)\)
\(=\left(a-b\right)\left(ab-ac-bc+c^2\right)\)
\(=\left(a-b\right)\left[b\left(a-c\right)-c\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(a-c\right)\left(b-c\right)\)
12, \(x^3-7x-6\)
\(=x^3-3x^2+3x^2-9x+2x-6\)
\(=x^2\left(x-3\right)+3x\left(x-3\right)+2\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+2\right)\)
\(=\left(x-3\right)\left(x^2+x+2x+2\right)\)
\(=\left(x-3\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]\)
\(=\left(x-3\right)\left(x+2\right)\left(x+1\right)\)
13, \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left(x^2+2\right)^2-4x^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
14, \(a^4+64\)
\(=a^4+16a^2+64-16a^2\)
\(=\left(a^2+8\right)^2-16a^2\)
\(=\left(a^2-4a+8\right)\left(a^2+4a+8\right)\)
15, \(x^5+x+1\)
\(=x^5-x^2+x^2+x+1\)
\(=x^2\left(x^3-1\right)+x^2+x+1\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
16, \(x^5+x-1\)
\(=x^5-x^4+x^3+x^4-x^3+x^2-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x^2-1\right)\)
17, \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
\(=\left(x^2+x\right)\left(x^2+x-2\right)-15\)
19, \(\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) (*)
Đặt \(x^2+8x+7=a\) ta có:
(*) \(\Leftrightarrow a\left(a+8\right)+15\)
\(\Leftrightarrow a^2+8a+15\)
\(\Leftrightarrow a^2+3a+5a+15\)
\(\Leftrightarrow a\left(a+3\right)+5\left(a+3\right)\)
\(\Leftrightarrow\left(a+3\right)\left(a+5\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
20, \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\) (*)
Đặt \(x^2+3x+1=a\) ta có:
(*) \(\Leftrightarrow a\left(a+1\right)-6\)
\(\Leftrightarrow a^2+a-6\)
\(\Leftrightarrow a^2+3a-2a-6\)
\(\Leftrightarrow a\left(a+3\right)-2\left(a+3\right)\)
\(\Leftrightarrow\left(a-2\right)\left(a+3\right)\)
Trả lại biến cũ ta có: (*) \(\Leftrightarrow\left(x^2+3x-1\right)\left(x^2+3x+5\right)\)

1) \(4a\left(x-5\right)-2\left(5-x\right)\)
\(=4a\left(x-5\right)+2\left(x-5\right)\)
\(=2\left(x-5\right)\left(2a+1\right)\)
2) \(-3a\left(x-3\right)-a^2\left(3-x\right)\)
\(=-3a\left(x-3\right)+a^2\left(x-3\right)\)
\(=a\left(x-3\right)\left(-3+a\right)\)
3) \(2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\)
\(=2a^2b\left(x+y\right)+4a^3b\left(x+y\right)\)
\(=2a^2b\left(x+y\right)\left(1+2a\right)\)
4) \(-3a\left(x-3\right)-a^2\left(3-a\right)\)
Mình nghĩ câu này đề sai và hình như nó là câu 2 thì phải
5) \(x^{m+1}-x^m\)
\(=x^m.x-x^m\)
\(=x^m\left(x-1\right)\)
6) \(x^{m+1}+x^m\)
\(=x^m.x+x^m\)
\(=x^m\left(x+1\right)\)
7) \(x^{m+2}-x^m\)
\(=x^m.x^2-x^m\)
\(=x^m\left(x^2-1\right)\)
\(=x^m\left(x-1\right)\left(x+1\right)\)
8) \(x^{m+2}-x^2\)
\(=x^m.x^2-x^2\)
\(=x^2\left(x^m-1\right)\)
9) \(x^{m+2}-x^{m+1}\)
\(=x^{m+1}.x-x^{m+1}\)
\(=x^{m+1}\left(x-1\right)\)