Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^4+x^2+1=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Số dư của phép chia đa thức f(x) cho x4 + x2 + 1 là đa thức có bậc thấp hơn, tức là \(ax^3+bx^2+cx+d\)
Ta có \(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)g\left(x\right)+\left(x^2+x+1\right)\left(ax+b-a\right)+\left(c-b\right)x+d+a-b\)
\(=\left(x^2+x+1\right)\left[\left(x^2-x+1\right)g\left(x\right)+ax+b-a\right]+\left(c-b\right)x+d+a-b\)
Vậy nên \(\hept{\begin{cases}c-b=-1\\d+a-b=1\end{cases}}\)
Ta cũng có:
\(f\left(x\right)=\left(x^4+x^2+1\right)g\left(x\right)+ax^3+bx^2+cx+d\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)g\left(x\right)+\left(x^2-x+1\right)\left(ax+b+a\right)+\left(c+b\right)x+d-a-b\)
Vậy nên \(\hept{\begin{cases}c+b=3\\d-a-b=5\end{cases}}\)
Từ (1) và (2) ta có: \(\hept{\begin{cases}c-b=-1\\c+b=3\end{cases}}\) và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên \(\hept{\begin{cases}c=1\\b=2\end{cases}}\) và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow\hept{\begin{cases}d=5\\a=-2\end{cases}}}\)
Vậy thì đa thức dư cần tìm là -2x3 + 2x2 + x + 5
Ta có : \(x^4+x^2+1=(x^2+1)^2-x^2=(x^2+x+1)(x^2-x+1)\)
Số dư của phép chia đa thức \(f(x)\)cho x4 + x2 + 1 là đa thức có bậc thấp hơn , tức là \(ax^3+bx^2+cx+d\)
Ta có : \(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2+x+1)(x^2-x+1)g(x)+(x^2+x+1)(ax+b-a)+(c-d)x+d+a-b\)
\(=(x^2+x+1)[(x^2-x+1)g(x)+ax+b-a]+(c-b)x+d+a-b\)
Vậy nên : \(\hept{\begin{cases}c-d=-1\\d+a-b=1\end{cases}}\)
Ta cũng có :
\(f(x)=(x^4+x^2+1)g(x)+ax^3+bx^2+cx+d\)
\(=(x^2-x+1)(x^2+x+1)g(x)+(x^2-x+1)(ax+b+a)+(c+b)x+d-a-b\)
Vậy nên : \(\hept{\begin{cases}c+d=3\\d-a-b=5\end{cases}}\)
Từ 1 và 2 , ta có : \(\hept{\begin{cases}c-d=-1\\c+d=3\end{cases}}\)và \(\hept{\begin{cases}d-b+a=1\\d-b-a=5\end{cases}}\)
Vậy nên : \(\hept{\begin{cases}c=1\\b=2\end{cases}}\)và \(\hept{\begin{cases}d-b=3\\a=-2\end{cases}\Rightarrow}\hept{\begin{cases}d=5\\a=-2\end{cases}}\)
Vậy thì đa thức dư cần tìm là : -2x3 + 2x2 + x + 5
có \(f\left(x\right)=\left(x+1\right)A\left(x\right)+5\)
\(f\left(x\right)=\left(x^2+1\right)B\left(x\right)+x+2\)
do f(x) chia cho \(\left(x+1\right)\left(x^2+1\right)\)là bậc 3 nên số dư là bậc 2. ta có \(f\left(x\right)=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+ax^2+bx+c=\left(x+1\right)\left(x^2+1\right)C\left(x\right)+a\left(x^2+1\right)+bx+c-a\)
\(=\left(x^2+1\right)\left(C\left(x\right).x+C\left(x\right)+a\right)+bx+c-a\)
Vậy \(bx+c-a=x+2\Rightarrow\hept{\begin{cases}b=1\\c-a=2\end{cases}}\)
mặt khác ta có \(f\left(-1\right)=5\Leftrightarrow a-b+c=5\Rightarrow a+c=6\Rightarrow\hept{\begin{cases}a=2\\c=4\end{cases}}\)
vậy số dư trong phép chia f(x) cho \(x^3+x^2+x+1\)là \(2x^2+x+4\)