K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Lời giải:

$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$

Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$

$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$

Vậy $M=\frac{1}{4}$

------------------

$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$

Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$

Vậy $N=\frac{5}{2}$

$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$

Đáp án C.

7 tháng 1 2018

giá trị lớn nhất là 2016

giá trị nhỏ nhất là 1

29 tháng 12 2015

\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)

<=> \(2^3\ge\left(a+b\right)^3\)

19 tháng 9 2015

Đặt a = 1-x

\(^{a^3+b^3=2=>b^3=2-a^3=2-\left(1-x\right)^3=1+x^3-3x^2+3x\le x^3+3x^2+3x+1=\left(x+1\right)^3=>b^3\le\left(x+1\right)^3=>b\le x+1}\)N=a+b\(\le\)1-x+x+1=2   

Vậy Max N = 2 <=> x=0 <=> a=b=1

19 tháng 9 2015

a3 + b3 = (a + b).(a2 - ab + b2) = 2 

ta có: a2 - ab + b= (a - (b/2))2 + 3b2/4 => a- ab + b\(\ge\) 0. Do đó, a + b > 0 (do 2> 0)

Áp dụng bất đẳng thức Bu nhi cốp xki ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)

Tiếp tục áp dụng bất đẳng thức Bunhi cốp xki với các số \(a\sqrt{a};\sqrt{a};b\sqrt{b};\sqrt{b}\) ta có

=> \(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2=4\left(a\sqrt{a}.\sqrt{a}+b\sqrt{b}.\sqrt{b}\right)^2\le4.\left(a^3+b^3\right)\left(a+b\right)=8\left(a+b\right)\)

Do a + b > 0 nên \(\left(a+b\right)^3\le8\Rightarrow a+b\le\sqrt[3]{8}=2\)

=> Max N = 2 khi a = b = 1