
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Lời giải:
$\frac{\sqrt{x}+1}{\sqrt{x}+4}=\frac{\sqrt{x}+4-3}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}$
Vì $\sqrt{x}\geq 0$ nên $\sqrt{x}+4\geq 4$
$\Rightarrow \frac{3}{\sqrt{x}+4}\leq \frac{3}{4}$
$\Rightarrow \frac{\sqrt{x}+1}{\sqrt{x}+4}=1-\frac{3}{\sqrt{x}+4}\geq 1-\frac{3}{4}=\frac{1}{4}$
Vậy $M=\frac{1}{4}$
------------------
$N=\frac{\sqrt{x}+5}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}$
Do $\sqrt{x}\geq 0$ nên $\sqrt{x}+2\geq 2$
$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$
$\Rightarrow \frac{\sqrt{x}+5}{\sqrt{x}+2}\leq 1+\frac{3}{2}=\frac{5}{2}$
Vậy $N=\frac{5}{2}$
$\Rightarrow 2M+N =2.\frac{1}{4}+\frac{5}{2}=3$
Đáp án C.


\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)
<=> \(2^3\ge\left(a+b\right)^3\)

Đặt a = 1-x
\(^{a^3+b^3=2=>b^3=2-a^3=2-\left(1-x\right)^3=1+x^3-3x^2+3x\le x^3+3x^2+3x+1=\left(x+1\right)^3=>b^3\le\left(x+1\right)^3=>b\le x+1}\)N=a+b\(\le\)1-x+x+1=2
Vậy Max N = 2 <=> x=0 <=> a=b=1
a3 + b3 = (a + b).(a2 - ab + b2) = 2
ta có: a2 - ab + b2 = (a - (b/2))2 + 3b2/4 => a2 - ab + b2 \(\ge\) 0. Do đó, a + b > 0 (do 2> 0)
Áp dụng bất đẳng thức Bu nhi cốp xki ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)
Tiếp tục áp dụng bất đẳng thức Bunhi cốp xki với các số \(a\sqrt{a};\sqrt{a};b\sqrt{b};\sqrt{b}\) ta có
=> \(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2=4\left(a\sqrt{a}.\sqrt{a}+b\sqrt{b}.\sqrt{b}\right)^2\le4.\left(a^3+b^3\right)\left(a+b\right)=8\left(a+b\right)\)
Do a + b > 0 nên \(\left(a+b\right)^3\le8\Rightarrow a+b\le\sqrt[3]{8}=2\)
=> Max N = 2 khi a = b = 1
