![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Phần a chỉ rút gọn được thôi bạn nhé !
a) F = 9 + 99 + 999 + 9999 + ... + 999.......9
2021 c/s 9
=> F = ( 999.........9 + 9 ) . 2021 : 2
=> F = 1000.........08 . 2021 : 2
2020 c/s 8
=> F = 500.........04 . 2021
2019 c/s 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Sửa đề:
B = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + 2019 - 2021 - 2023 + 2025 + 2027
= (1 - 3 - 5 + 7) + (9 - 11 - 13 + 15) + ... + (2019 - 2021 - 2023 + 2025) + 2027
= 0 + 0 + ... + 0 + 2027
= 2027
![](https://rs.olm.vn/images/avt/0.png?1311)
9 + 99 + 999 + ... + 999...99 (50 chữ số 9)
= (10 - 1) + (100 - 1) + (1000 - 1) + ... + (1000...0 - 1) (50 chữ số 0)
= (10 + 100 + 1000 + ... + 1000...0) (50 chữ số 0) - (1 + 1 + 1 + ... + 1) (50 số 1)
= (10 + 102 + 103 + ... + 1050) - 50
= (1051 - 10) - 50
= 1051 - 10 - 50
= 1051 - 60
= 1000...0(51 chữ số 0) - 60
= 999...940
(49 chữ số 9)
9 + 99 + 999 + ... + 999...99 (50 chữ số 9)
= (10 - 1) + (100 - 1) + (1000 - 1) + ... + (1000...0 - 1) (50 chữ số 0)
= (10 + 100 + 1000 + ... + 1000...0) (50 chữ số 0) - (1 + 1 + 1 + ... + 1) (50 số 1)
= (10 + 102 + 103 + ... + 1050) - 50
= (1051 - 10) - 50
= 1051 - 10 - 50
= 1051 - 60
= 1000...0(51 chữ số 0) - 60
= 999...940
(49 chữ số 9)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=16^{604}\cdot4=\overline{.....6}\cdot4=\overline{....4}\)
\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=81^{504}\cdot9=\overline{.....1}\cdot9=\overline{....9}\)
\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot\overline{.....7}=\overline{.....1}\cdot\overline{....7}=\overline{.....7}\)
\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{....6}\cdot8=\overline{......8}\)
\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{.....1}\cdot9=\overline{.....9}\)
Bài giải
Ta có :
\(2^{2018}=2^{2016}\cdot2^2=\left(2^4\right)^{504}\cdot4=\overline{\left(...6\right)}^{504}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy ...
\(3^{2018}=3^{2016}\cdot3^2=\left(3^4\right)^{504}\cdot9=\overline{\left(...1\right)}^{504}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy ...
\(7^{2019}=7^{2016}\cdot7^3=\left(7^4\right)^{504}\cdot7^3=\overline{\left(...1\right)}^{504}\cdot343=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy ...
\(8^{2021}=8^{2020}\cdot8=\left(8^4\right)^{505}\cdot8=\overline{\left(...6\right)}^{505}\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy ...
\(9^{2023}=9^{2022}\cdot9=\left(9^2\right)^{1011}\cdot9=\overline{\left(...1\right)}^{1011}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1-3+5-7+......-2019+2021-2023\)
\(A=\left(1-3\right)+\left(5-7\right)+....+\left(2021-2023\right)\)
\(A=-2+\left(-2\right)+....+\left(-2\right)\left(506 cặp\right)\)
\(A=-2.506\)
\(A=-1012\)
*) A=(1-3)+(5-7)+....+(2021-2023)
<=> A=-2+(-2)+...+(-2)
Dãy A có (2023-1):2+1=1012 số số hạng
=> Có 506 số (-2)
=> A=(-2).506=-1012
![](https://rs.olm.vn/images/avt/0.png?1311)
1-3-5+7+9-11-13+15+...+2017-2019-2021+2023=
=(1-3-5+7)+(9-11-13+15)+...+(2017-2019-2021+2023)=
=0+0+.....+0=0
cứu
dấu sao kia là gì á bạn ơi