Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Olm sẽ hướng dẫn các em phương pháo giải tổng quát dạng này như sau:
Bước 1 phân tích số đã cho thành tích của các số nguyên tố
Bước 2 nhóm các thừa số nguyên tố thành 1 nhóm ta sẽ được tích của hai số cần tìm
2499 = 3 \(\times\) 7 \(\times\) 7 \(\times\) 17
2499 = ( 7 \(\times\) 7) \(\times\) ( 3 \(\times\) 17)
2499 = 49 \(\times\) 51
Ta có:
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{15}+\frac{1}{16}=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)+\left(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\right)+\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}\right)+\left(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}\right)\)\(+\left(\frac{1}{15}+\frac{1}{16}\right)\)
Vì \(\frac{1}{6}+\frac{1}{7}+\frac{1}{8}<3.\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}<3.\frac{1}{9}=\frac{1}{3}\)
\(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}<3.\frac{1}{12}=\frac{1}{4}\)
\(\frac{1}{15}+\frac{1}{16}<3.\frac{1}{15}=\frac{1}{5}\)
Nên \(A<2.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)<2.\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}\right)=3\) (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Có mình ra đề này rồi nhưng khác số và cũng giảng luôn. Mình ghi lời giải của mình ra rồi đưa vào đó làm được ko?
Đề của cô mình nè A=1/2+1/3+1/4+...+1/15+1/16.Chứng tỏ rằng A không phải là số tự nhiên.
\(S = \frac{1}{3} +\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28} \)
\(S=\frac{1}{3}+\frac{1}{3}.\frac{1}{2}+\frac{1}{5}.\frac{1}{2}+\frac{1}{5}.\frac{1}{3}+\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{4} \)
\(S=\frac{1}{3}(1+\frac{1}{2})+\frac{1}{5}(\frac{1}{2}+\frac{1}{3})+\frac{1}{7}(\frac{1}{3}+\frac{1}{4})\)
\(S=\frac{1}{3}.\frac{3}{2}+\frac{1}{5}.\frac{5}{6}+\frac{1}{7}.\frac{7}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}\)
\(S=\frac{6}{12}+\frac{2}{12}+\frac{1}{12}\)
\(S=\frac{9}{12}\)
\(S=\frac{3}{4}\)
\(\frac{ }{6}=\frac{10}{15}\) và \(\frac{1}{3}=\frac{8}{ }\)
Ta gọi: \(\frac{ }{6}=\frac{a}{6}\) và \(\frac{8}{ }=\frac{8}{b}\)
Ta có: \(\frac{a}{6}=\frac{a:2.5}{6:2.5}=\frac{10}{15}\)
\(\Rightarrow a=10:5.2=4\)
\(\frac{4}{6}=\frac{10}{15}\)
Vậy, a = 4
Ta có: \(\frac{1}{3}=\frac{1.8}{3.8}=\frac{8}{b}=\frac{8}{24}\)
\(\Rightarrow b=24\)
\(\frac{1}{3}=\frac{8}{24}\)
Vậy, b = 24
Đáp án A. Theo quy luật : cứ sau vòng lặp 2 số (vd 7-8) thì số thứ nhất giảm đi 1 đơn vị (vd 7->6) và số thứ 2 tăng lên 1 đơn vị (vd 8->9)
Trước hết ta so sánh 10A và 10B
Ta có:
\(10A=\frac{10^{16}+10}{10^{16}+1}=1+\frac{9}{10^{16}+1}\) \(10B=\frac{10^{17}+10}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì: \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\) nên 10A > 10B, do đó A>B
Ta thấy:B<1 vì 1015+1<1016+1
Theo quy tắc :\(\frac{a}{b}\)<\(\frac{a+m}{b+m}\)nên ta có: B =\(\frac{10^{16}+1}{10^{17}+1}\)<\(\frac{10^{16}+1+9}{10^{17}+1+9}\)<\(\frac{10^{16}+10}{10^{17}+10}\)<\(\frac{10\left(10^{15}+1\right)}{10\left(10^{16}+1\right)}\)=A
Suy ra B<A
D=\(\dfrac{929}{714}\)
D = 929/714