Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\sqrt{45.80}=\sqrt{9.400}=\sqrt{9}.\sqrt{400}=3.20=60\)
b) \(\sqrt{75.48}=\sqrt{25.3.16.3}=\sqrt{5^2.3^2.4^2}=5.4.3=60\)
c)\(\sqrt{90.6,4}=\sqrt{10.9.4.1,6}=\sqrt{4^2.3^2.2^2}=4.3.2=24\)
d) \(\sqrt{2,5.14,4}=\sqrt{\dfrac{25}{10}.\dfrac{144}{10}}=\sqrt{\dfrac{25.144}{100}}=\sqrt{\left(\dfrac{5.12}{10}\right)^2}=\dfrac{5.12}{10}=6\)
a) \(\sqrt{45.80}=\sqrt{9.400}=\sqrt{9}.\sqrt{400}=3.20=60\)
b)\(\sqrt{75.48}=\sqrt{25.3.3.16}=5.3.4=60\)
c)\(\sqrt{90.6,4}=\sqrt{9.64}=3.8=24\)
d)\(\sqrt{2,5.14,4}=\sqrt{\dfrac{25}{10}.\dfrac{144}{10}}=\sqrt{\dfrac{25.144}{100}=\dfrac{5.12}{10}=\dfrac{60}{10}=6}\)
a)\(\sqrt{75\cdot48}=\sqrt{25\cdot3\cdot48}=\sqrt{25\cdot144}=\sqrt{25}\cdot\sqrt{144}=5\cdot12=60\)
b) \(\sqrt{2,5\cdot14,4}=\sqrt{25\cdot144\cdot\frac{1}{100}}=\sqrt{25}\cdot\sqrt{144}\cdot\sqrt{\frac{1}{100}}=5\cdot12\cdot\frac{1}{10}=6\)
Câu 1:
a, \(\sqrt{50.98} = 5\sqrt{2} . 7\sqrt{2} = 70\)
b, \(\sqrt{2,5.12,1} = 30,25\)
c, \(\sqrt{17.51.27} = \sqrt{23409} = 153\)
d, \(\sqrt{32.128} = \sqrt{4096} = 64\)
e, \(\sqrt{3,2.7,2.49} = 7\sqrt{3,2.7,2} = 7\sqrt{23,04} =33,6\)
g, \(\sqrt{2,5.12,5.20} = \sqrt{625} = 25\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
a) Ta có: \(\sqrt{0.1}\cdot\sqrt{4000}\)
\(=\sqrt{\frac{1}{10}}\cdot\sqrt{4000}\)
\(=\sqrt{\frac{1}{10}\cdot4000}=\sqrt{400}=20\)
b) Ta có: \(\sqrt{\frac{9}{196}}=\sqrt{\left(\frac{3}{14}\right)^2}\)
\(=\left|\frac{3}{14}\right|\)
\(=\frac{3}{14}\)(Vì \(\frac{3}{14}>0\))
c) Ta có: \(\sqrt{16}\cdot\sqrt{36}-\sqrt{125}:\sqrt{0.01}\)
\(=\sqrt{16\cdot36}-\frac{\sqrt{125}}{\sqrt{\frac{1}{100}}}\)
\(=\sqrt{576}-\sqrt{125:\frac{1}{100}}\)
\(=24-\sqrt{125\cdot100}\)
\(=24-\sqrt{12500}\)
\(=24-50\sqrt{5}\)
d) Ta có: \(\left(\sqrt{112}-\sqrt{63}+\sqrt{7}\right):\sqrt{7}\)
\(=\left(4\sqrt{7}-3\sqrt{3}+\sqrt{7}\right):\sqrt{7}\)
\(=\frac{2\sqrt{7}}{\sqrt{7}}=2\)
e) Ta có: \(\sqrt{2.5}\cdot\sqrt{30}\cdot\sqrt{48}\)
\(=\sqrt{\frac{5}{2}\cdot30\cdot48}=\sqrt{3600}=60\)
a: \(=2\cdot3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
b: \(=5\sqrt{10}+2\cdot5-5\sqrt{10}=10\)
c: \(=2\sqrt{7}\cdot\sqrt{7}-\sqrt{12}\cdot\sqrt{7}-\sqrt{7}\cdot\sqrt{7}+2\sqrt{21}=2\cdot7-7=7\)
d: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}=2\cdot11=22\)
mình làm mẫu 2 bài nhé 2 bài kia bạn làm tương tự
1)a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(\sqrt{10-2\sqrt{21}}+\sqrt{7}=\sqrt{\left(\sqrt{7}+\sqrt{3}\right)^2}+\sqrt{7}=\sqrt{7}+\sqrt{3}+\sqrt{7}=2\sqrt{7}+\sqrt{3}\)
2)a) \(\sqrt{12-6\sqrt{3}}-\sqrt{3}=\sqrt{\left(3-\sqrt{3}\right)^2}-\sqrt{3}=3-\sqrt{3}-\sqrt{3}=3-2\sqrt{3}\)
b) \(\sqrt{7+2\sqrt{6}}-\sqrt{3}=\sqrt{\left(1+\sqrt{6}\right)^2}-\sqrt{3}=1+\sqrt{6}-\sqrt{3}\)
\(\sqrt{2 , 5.14 , 4}=\sqrt{25\cdot1,44}=\sqrt{25}\cdot\sqrt{1,44}=5\cdot1,2=6\)
d, \(\sqrt{2,5.14,4}=6\)
chúc bn học tốt