\(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)

e. \(\left(x^2+3x+1\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

d)\(\left(x^2+y^2-z^2\right)^2-4x^2y^2\)

\(=\left(x^2+y^2-z^2+2xy\right)\left(x^2+y^2-z^2-2xy\right)\)

\(=\left[\left(x^2+2xy+y^2\right)-z^2\right]\left[\left(x^2-2xy+y^2\right)-z^2\right]\)

\(=\left[\left(x+y\right)^2-z^2\right]\left[\left(x-y\right)^2-z^2\right]\)

\(=\left(x+y-z\right)\left(x+y+z\right)\left(x-y-z\right)\left(x-y+z\right)\)

e)Đặt \(x^2+3x=a\)

Có: \(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)

\(=\left(a+1\right)\left(a-3\right)-5\)

\(=a^2-3a+a-3-5\)

\(=a^2-2a-8\)

\(=a^2+2x-4x-8\)

\(=a\left(a+2\right)-4\left(a+2\right)\)

\(=\left(a+2\right)\left(a-4\right)\)

\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)

\(=\left(x^2+x+2x+2\right)\left(x^2-x+4x-4\right)\)

\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)

\(=\left(x+1\right)\left(x+2\right)\left(x-1\right)\left(x+4\right)\)

4 tháng 8 2016

\(d,\left(x^2+y^2-z^2\right)^2-4x^2y^2\)
\(=\left(x^2+y^2-z^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)
\(=\left[\left(x^2-2xy+y^2\right)-z^2\right]\left[\left(x^2+2xy+y^2\right)-z^z\right]\)
\(=\left[\left(x-y\right)^2-z^2\right]\left[\left(x+y\right)^2-z^2\right]\)
\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)
\(e,\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\left(1\right)\)
\(\text{Đặt }x^2+3x+\frac{1-3}{2}=t\)
\(\text{hay }x^2+3x-2=t\left(2\right)\)
\(\left(1\right)\Leftrightarrow\left(t+3\right)\left(t-1\right)-5\)
\(\Rightarrow t^2-t+3t-3-5\)
\(=t^2+2t-8\)
\(=t^2-2t+4t-8\)
\(=t\left(t-2\right)+4\left(t-2\right)\)
\(=\left(t-2\right)\left(t+4\right)\left(3\right)\)
\(\text{Thay (2) vào (3),ta được:}\)
\(\left(x^2+3x-2-2\right)\left(x^2+3x-2+4\right)\)
\(=\left(x^2+3x-4\right)\left(x^2+3x+2\right)\)

\(=\left(x^2-x+4x-4\right)\left(x^2+x+2x+2\right)\)
\(=\left[x\left(x-1\right)+4\left(x-1\right)\right]\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(=\left(x-1\right)\left(x+4\right)\left(x+1\right)\left(x+2\right)\)

a, \(=12x^5+9x^3y^2-6x^2y^3-20x^4y-15x^2y^3-10xy^4-24x^3y^2-18xy^4+12y^5\)

(tự rút gọn cái :P)

b, \(8x^3+4x^2y-2xy^2-y^3\)

\(=4x^2\left(2x+y\right)-y^2\left(2x+y\right)=\left(2x+y\right)^2\left(2x-y\right)\)

\(4x^2y^2-4x^2-4xy-y^2=4x^2y^2-\left(2x+y\right)^2\)

\(=\left(2x+y+2xy\right)\left(2xy-2x+y\right)\)

Mấy cái còn lại nhân tung ra là được mà :))))

21 tháng 2 2020

làm luôn đi cậu

10 tháng 8 2016

\(a,3x-6y=3\left(x-2y\right)\)

\(b,\frac{2}{5}x^2+5x^3+x^2y=x^2\left(\frac{2}{5}+5x+y\right)\)

18 tháng 2 2020

Bài 2 :

a) \(\left(5x^2y-8xy^2+y^3\right)\left(2x^3+x^2y-3y^2\right)\)

\(=10x^5y+5x^4y^2-15x^2y^3-16x^4y^2-8x^3y^3+24xy^4+2x^3y^3+x^2y^4-3y^5\)

\(=10x^5y-11x^4y^2-6x^3y^3+x^2y^4-15x^2y^3+24xy^4-3y^5\)

24 tháng 2 2020

a)\(\left(4x^3-xy^2+y^3\right)\left(x^2y+2xy^2-2y^3\right)\)

\(=x^2y\left(4x^3-xy^2+y^3\right)+2xy^2\left(4x^3-xy^2+y^3\right)\)

\(-2y^3\left(4x^3-xy^2+y^3\right)\)

\(=4x^5y-x^3y^3+x^2y^4+8x^4y^2-2x^2y^4+2xy^5\)

\(-8x^3y^3+2xy^5-2y^6\)

\(=-2y^6+4x^5y+\left(2xy^5+2xy^5\right)+8x^4y^2+\left(x^2y^4-2x^2y^4\right)\)

\(-\left(x^3y^3+8x^3y^3\right)\)

\(=-2y^6+4x^5y+4xy^5+8x^4y^2-x^2y^4-9x^3y^3\)

24 tháng 2 2020

b) 

(!)  \(2\left(x+y\right)^2-7\left(x+y\right)+5\)

\(=2\left(x+y\right)^2-2\left(x+y\right)-5\left(x+y\right)+5\)

\(=2\left(x+y\right)\left(x+y-1\right)-5\left(x+y-1\right)\)

\(=\left(2x+2y-5\right)\left(x+y-1\right)\)

(!!) \(\left(x+y+z\right)^2-x^2-y^2-z^2\)

\(=\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-x^2-y^2-z^2\)

\(=2\left(xy+yz+zx\right)\)

31 tháng 8 2018

a)\(4x^4+y^4=\left(4x^4+y^4+4x^2y^2\right)-4x^2y^2\)

\(=\left(2x^2+y^2\right)^2-\left(2xy\right)^2\)

\(=\left(2x^2+y^2-2xy\right)\left(2x^2+y^2+2xy\right)\)

b)\(\left(x^2-3x-1\right)^2-12\left(x^2-3x-1\right)+27\)

Đặt x^2 - 3x - 1 = A

\(\Rightarrow A^2-12A+27=\left(A^2-12A+36\right)-9\)

\(=\left(A-6\right)^2-9=\left(A-6-3\right)\left(A-6+3\right)\)

\(=\left(A-9\right)\left(A-3\right)\)

Hay \(=\left(x^2-3x-1-9\right)\left(x^2-3x-1-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x-5\right)\left(x+2\right)\left(x-4\right)\left(x+1\right)\)

c)\(x^3-x^2-5x+125\)

\(=\left(x^3+5^3\right)-\left(x^2+5x\right)\)

\(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)\)

\(=\left(x+5\right)\left(x^2-5x+25-x\right)\)

\(=\left(x+5\right)\left(x^2-6x+25\right)\)

d)\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+2xyz\)

\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Mình có việc bận nên chỉ đưa được kết quả ý d)  thật lòng mong các bạn tự tham khảo và giải

20 tháng 4 2017

Bài giải:

a) 3x - 6y = 3 . x - 3 . 2y = 3(x - 2y)

b) 2525x2 + 5x3 + x2y = x2 (2525 + 5x + y)

c) 14x2y – 21xy2 + 28x2y2 = 7xy . 2x - 7xy . 3y + 7xy . 4xy = 7xy(2x - 3y + 4xy)

d) 2525x(y - 1) - 2525y(y - 1) = 2525(y - 1)(x - y)

e) 10x(x - y) - 8y(y - x) =10x(x - y) - 8y[-(x - y)]

= 10x(x - y) + 8y(x - y)

= 2(x - y)(5x + 4y)

4 tháng 9 2017

a,\(3x-6y=3\left(x-2y\right)\)

b,\(x^2(\dfrac{2}{5}+5x+y)\)

c,\(7xy\left(2x-3y+4xy\right)\)

d,\(\dfrac{2}{5}x\left(y-1\right)-\dfrac{2}{5}y\left(y-1\right)\)

=\(\dfrac{2}{5}\left(y-1\right)\left(x-y\right)\)

e,\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)\)

\(2\left(x-y\right)\left(5x+4y\right)\)

2 tháng 8 2016

a)(x+y)2-(x-y)2

=(x+y-x+y)(x+y+x-y)

=2y.2x=4xy

b)(3x+1)2-(x+1)2

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

=4x(2x+1)

c) x3+y3+z3-3xyz

= (x+y)3- 3xy(x+y) +z3-3xyz

=(x+y+z)( x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=(x+y+z)(x2+y2+z2-xy-xz-yz)

4 tháng 8 2016

Phân tích đa thức sau thành nhân tử :

a) \(\left(a+b+c\right)^3-a^3-b^3-c^3\)

b) \(x^3+y^3+z^3-3xyz\)