\(ℕ^∗\) mà không thuộc \(ℕ\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2019

cái đầu sai cái thứ 2 đúng

Đ hay S :

Có số a thuộc  mà không thuộc ℕ   ( Sai )

Có số b thuộc ℕ mà không thuộc  ( Đúng )

Viết STN liền sau :

34 - 35

21 - 36

a - a + 1 ( a )

b  ( b  )

Viết STN liền trc :

24 - 23 

890 - 889

a -1 ( a  )

b +1 ( b  

Study well 

7 tháng 4 2020

Trl :

Bạn kia làm đúng rồi nhé !

Học tốt nhé bạn @

Để thỏa mãn đề bài thì 7n+13 phải chia hết cho n+1 và 3n+1

Trước hết ta xét:\(7n+13⋮n+1\Rightarrow\left(7n+7\right)+6⋮n+1\Rightarrow7\left(n+1\right)+6⋮n+1\Rightarrow6⋮n+1\)

Mà \(n\inℕ^∗\Rightarrow n+1\inℕ^∗\)

\(\Rightarrow n+1\in\left\{2;3;6\right\}\Rightarrow n\in\left\{1;2;5\right\}\)

Lần lượt thay các giá trị của n vào 7n+13 và 3n+1 xem 7n+13 có chia hết cho 3n+1 không

Sau khi thử thì còn các giá trị n là 1;5 thỏa mãn

Vậy n=1 hoặc n=5

Để 7n +13 là mẫu số chung của \(\frac{n}{n+1}và\frac{3}{3n+1}\) thì 7n+13 phải chia hết cho n+1 và 3n+1

*Xét 7n+13\(⋮\)n+1(1)

+)Ta có:n+1\(⋮\)n+1

=>7.(n+1)\(⋮\)n+1

=>7n+7\(⋮\)n+1(2)

+)Từ (1) và (2)

=>(7n+13)-(7n+7)\(⋮\)n+1

=>7n+13-7n-7\(⋮\)n+1

=>6\(⋮\)n+1

=>n+1\(\in\)Ư(6)={\(\pm\)1;\(\pm\)2;\(\pm\)3}

=>n\(\in\){-2\(\notin\)N*;0\(\notin\)N*;-3\(\notin\)N*;1\(\in\)N*;-4\(\notin\)N*;2\(\in\)N*}

=>n\(\in\){1;2}(*)

*Xét 7n+13\(⋮\)3n+1

      =>3.(7n+13)\(⋮\)3n+1

      =>21n+39\(⋮\)3n+1(3)

+)Ta có:3n+1\(⋮\)3n+1

        =>7.(3n+1)\(⋮\)3n+1

        =>21n+7\(⋮\)3n+1(4)

+)Từ (3) và (4)

=>(21n+39)-(21n+7)\(⋮\)3n+1

=>21n+39-21n-7\(⋮\)3n+1

=>32\(⋮\)3n+1

=>3n+1\(\in\)Ư(32)={\(\pm\)1;\(\pm\)2;\(\pm\)4;\(\pm\)8;\(\pm\)16;\(\pm\)32}

+)Ta có bảng:

3n+1-11-22-44-88-1616-3232
n\(\frac{-2}{3}\)\(\notin\)N*0\(\notin\)N*-1\(\notin\)N*\(\frac{1}{3}\)\(\notin\)N*\(\frac{-5}{3}\)\(\notin\)N*1\(\in\)N*-3\(\notin\)N*\(\frac{7}{3}\)\(\notin\)N*-5\(\notin\)N*5\(\in\)N*\(\frac{-31}{3}\)\(\notin\)N*\(\frac{31}{3}\)\(\notin\)N*

=>n\(\in\){1;5}(**)

+)Từ (*) và (**)

=>n=1

Vậy n=1

Chúc bn học tốt

19 tháng 11 2018

Câu trả lời đúng :

Z

F

G

H

Chúc bạn học tốt !

19 tháng 11 2018

Câu trả lời đúng là : A ; D ; F ; G ;

Tham khảo:

Câu hỏi của nguyễn thùy linh - Toán lớp 6 - Học toán với OnlineMath

nhé!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

16 tháng 12 2018

\(Taco:\hept{\begin{cases}a+4b⋮13\\13a+13b⋮13\end{cases}}\Rightarrow13a+13b-3\left(a+4b\right)⋮13\Rightarrow10a+b⋮13\)

DD
11 tháng 3 2022

1) \(\left(3x+5y\right)\left(x+4y\right)⋮7\)

\(\Leftrightarrow\orbr{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Ta có: \(\left(3x+5y\right)⋮7\Leftrightarrow5\left(3x+5y\right)=15x+25y=\left(x+4y\right)+2.7x+3.7y⋮7\)

\(\Leftrightarrow\left(x+4y\right)⋮7\)

Do đó \(\hept{\begin{cases}3x+5y⋮7\\x+4y⋮7\end{cases}}\)

Suy ra \(\left(3x+5y\right)\left(x+4y\right)⋮\left(7.7\right)\Leftrightarrow\left(3x+5y\right)\left(x+4y\right)⋮49\)(ta có đpcm) 

DD
11 tháng 3 2022

2) \(n^3-n=n\left(n^2-1\right)=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)

\(=n\left(n-1\right)\left(n+1\right)\)

Có \(n\left(n-1\right)\left(n+1\right)\)là tích của ba số nguyên liên tiếp mà trong ba số \(n-1,n,n+1\)có ít nhất một số chia hết cho \(2\), một số chia hết cho \(3\). Kết hợp với \(\left(2,3\right)=1\)

Suy ra \(n\left(n-1\right)\left(n+1\right)\)chia hết cho \(2.3=6\).

20 tháng 5 2017

a) đúng

b) sai

c) sai

d) đúng

10 tháng 7 2017

khẳng định a) đúng

khẳng định b) sai

khẳng định c) sai

khẳng định d) đúng

4 tháng 5 2019

Ta có A=\(\frac{3x\left(2n+5\right)}{2x\left(3n+1\right)}\)

A=\(\frac{6n+15}{6n+2}\)=\(\frac{\left(6n+2\right)+13}{6n+2}\)=\(\frac{6n+2}{6n+2}\)+\(\frac{13}{6n+2}\)=1+\(\frac{13}{6n+2}\)

Để A là số tự nhiên =>6n+2 chia hết cho 13

=>6n+2 thuộc Ư (13)=(1;13)

6n+2=1=>n thuộc Z (loại)

6n+2=13=> ko tìm đc n

4 tháng 5 2019

Để A có giá trị là SNT \(\Leftrightarrow2n+5⋮3n+1\)

                                    \(\Leftrightarrow6n+15⋮3n+1\)

                                   \(\Leftrightarrow2.\left(3n+1\right)+13⋮3n+1\)

         mà \(\Leftrightarrow2.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow3n+1\inƯ\left(13\right)=\left\{1;13\right\}\)( ước phải là SNT )

\(\Rightarrow n\in\left\{0;4\right\}\)