\(\frac{1}{1.5}+\frac{1}{5.9}+...........+\frac{1}{397.401}< \frac{1}{4}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Gọi A=1/1.5+1/5.9+...+1/397.401

Ta có:

\(4A=\frac{4}{1.5}+\frac{4}{5.9}+...+\frac{4}{397.401}=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}=1-\frac{1}{401}\)

=>\(A=\frac{1}{4}-\frac{1}{1604}< \frac{1}{4}\)

=>đpcm

6 tháng 10 2018

d, Đặt biểu thức trên là S, ta có:

S = 1/1.5 + 1/5.9 + .... + 1/397.401 < 1/4

Nhân cả hai vế với 4 ,ta có :

4S = 4. ( 1/1.5 + 1/5.9 + .... + 1/397.401 )

4S = 4/1.5 + 4/5.9 + .... + 4/397.401

4S = 1 - 1/5 + 1/5 - 1/9 + .... +1/397 - 1/401

4S = 1 - 1/401

4S = 400/401

  S = 400/401 : 4 

  S = 100/401.

Ta có : 100/401 và 1/4

            400/1604 < 401/1604

=>  S < 1/4

Vậy 1/1.5 + 1/5.9 + .... + 1/397.401 < 1/4

5 tháng 10 2018

\(\left|x+\frac{1}{1\cdot5}\right|+\left|x+\frac{1}{5\cdot9}\right|+...+\left|x+\frac{1}{397\cdot401}\right|=101x\left(1\right)\)

Điều kiện:\(101x\ge0\)\(\Rightarrow\left|x+\frac{1}{1\cdot5}\right|\ge0;\left|x+\frac{1}{5\cdot9}\right|\ge0;.....;\left|x+\frac{1}{397\cdot401}\right|\ge0\)

Do vậy\(\left(1\right)\)trở thành:\(x+\frac{1}{1\cdot5}+x+\frac{1}{5\cdot9}+...+x+\frac{1}{397\cdot401}=101x\)

\(\left(x+x+x+..+x\right)+\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+..+\frac{1}{397\cdot401}\right)\)

Có 100 số x

\(\Leftrightarrow\)\(100x+\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{397}-\frac{1}{401}\right)=101x\)

\(\Leftrightarrow\)\(100x+\frac{1}{4}\left(1-\frac{1}{401}\right)=101x\)

\(\Leftrightarrow100x+\frac{1}{4}\left(\frac{400}{401}\right)=101x\)

\(\Leftrightarrow\)\(x=\frac{1}{4}\cdot\frac{400}{401}\)\(=\frac{100}{401}\)

6 tháng 10 2020

Bài này khá ez thôi: 

a) bạn sửa lại đề rồi làm theo cách làm của b,c,d nhé

b) Ta có: \(\left|x+1,1\right|+\left|x+1,2\right|+\left|x+1,3\right|+\left|x+1,4\right|\ge0\left(\forall x\right)\)

\(\Rightarrow5x\ge0\Rightarrow x\ge0\) khi đó:

\(PT\Leftrightarrow x+1,1+x+1,2+x+1,3+x+1,4=5x\)

\(\Leftrightarrow x=5\)

c,d tương tự nhé

6 tháng 10 2020

c,\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}+\right|+...+\left|x+\frac{1}{97.99}\right|\ge0\forall x\)

\(\Rightarrow50x\ge0\Rightarrow x\ge0\)Khi đó:

\(x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)

\(\Rightarrow49x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=50x\)

\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)=\frac{49}{99}\)

14 tháng 6 2016

Hỏi đáp Toán

14 tháng 6 2016

a) S1 = \(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{99.100}\)

          = \(-\frac{1}{1}-\frac{1}{2}-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{99}-\frac{1}{100}\)

          = \(\frac{-1}{1}-\frac{1}{100}\)

          = \(-\frac{101}{100}\)

a, \(\frac{1}{1.4}\)+\(\frac{1}{4.7}\)+......+\(\frac{1}{97.100}\)= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( \(\frac{3}{1.4}\)+\(\frac{3}{4.7}\)+.......+\(\frac{3}{97.100}\))= |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1  - \(\frac{1}{4}\)\(\frac{1}{4}\)-\(\frac{1}{7}\)+......+\(\frac{1}{97}\)-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) ( 1-\(\frac{1}{100}\)) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{1}{3}\) . \(\frac{99}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{33}{100}\) = |\(\frac{x}{3}\)|

\(\Rightarrow\)\(\frac{x}{3}\)\(\orbr{\begin{cases}\frac{33}{100}\\\frac{-33}{100}\end{cases}}\)

Với \(\frac{x}{3}\) = \(\frac{33}{100}\)

\(\Rightarrow\)100x= 33.3

 \(\Rightarrow\)100x=99

\(\Rightarrow\)x=\(\frac{99}{100}\)

Với \(\frac{x}{3}\)=\(\frac{-33}{100}\)

\(\Rightarrow\)100x=-33.3

\(\Rightarrow\)100x=-99

\(\Rightarrow\)x=\(\frac{-99}{100}\)

Vậy x=\(\orbr{\begin{cases}\frac{99}{100}\\\frac{-99}{100}\end{cases}}\)

b, \(\frac{4}{1.5}\)\(\frac{4}{5.9}\)+......+ \(\frac{4}{97.101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{9}\)+......+\(\frac{1}{97}\)-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)1-\(\frac{1}{101}\)= |\(\frac{5x-4}{101}\)

\(\Rightarrow\) \(\frac{100}{101}\)= |\(\frac{5x-4}{101}\)|

\(\Rightarrow\)\(\frac{5x-4}{101}\) =\(\orbr{\begin{cases}\frac{100}{101}\\\frac{-100}{101}\end{cases}}\)

Với \(\frac{5x-4}{101}\) =\(\frac{100}{101}\)

\(\Rightarrow\)(5x-4).101=100.101

\(\Rightarrow\)505x-404=10100

\(\Rightarrow\)505x=10504

\(\Rightarrow\)x=\(\frac{104}{5}\)

Với \(\frac{5x-4}{101}\)=\(\frac{-100}{101}\)

\(\Rightarrow\)(5x-4). 101=-100.101

\(\Rightarrow\)505x-404=-10100

\(\Rightarrow\)505x=-9696

\(\Rightarrow\)x=\(\frac{-96}{5}\)

Vậy x=\(\orbr{\begin{cases}\frac{104}{5}\\\frac{-96}{5}\end{cases}}\)

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

12 tháng 9 2019

1 Tính : 

a) \(A=\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)

\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{n}\right)\)

\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{n}\)

\(=\frac{1}{n}\)

b) \(B=\frac{4}{1.5}-\frac{4}{5.9}-\frac{4}{9.13}-...-\frac{4}{\left(n-4\right).n}\)

\(=\frac{4}{1.5}-\left(\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{\left(n-4\right).n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\left(\frac{1}{5}-\frac{1}{n}\right)\)

\(=\frac{4}{5}-\frac{1}{5}+\frac{1}{n}\)

\(=\frac{3}{5}+\frac{1}{n}\)

c) \(C=1-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{10}}\)

\(=1-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

Đặt \(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow C=1-B\left(1\right)\)

\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

Lấy 2B trừ B ta có : 

\(2B-B=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)

\(B=1-\frac{1}{2^{10}}\left(2\right)\)

Thay (2) vào (1) ta có :

\(C=1-\left(1-\frac{1}{10}\right)\)

\(=1-1+\frac{1}{10}\)

\(=\frac{1}{10}\)

Vậy \(C=\frac{1}{10}\)

28 tháng 9 2016

làm hộ mình vs khẩn cấp