Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x≠9, x≥0\(D=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\Rightarrow D=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\Rightarrow D=\dfrac{3}{\sqrt{x}+3}\)b) ta có D=\(\dfrac{1}{3}\Rightarrow\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\Leftrightarrow\sqrt{x}+3=9\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\)(thỏa mãn)
Vậy khi x=36 thì D=\(\dfrac{1}{3}\)
c) Ta có \(M=\dfrac{3}{\sqrt{x}+3}\) càng lớn thì \(\sqrt{x}+3\) càng nhỏ⇒Nếu \(M=\dfrac{3}{\sqrt{x}+3}\) lớn nhất thì \(\sqrt{x}+3\) nhỏ nhất
Ta có \(\sqrt{x}\)≥0⇒\(\sqrt{x}+3\)≥3
Vật GTNN của \(\sqrt{x}+3\) là 3⇒GTLN của M=\(\dfrac{3}{3}=1\)
Đẳng thức xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
mk nghỉ ở giữa 2 ngoặc là dấu chia mới đúng chứ :
đk : \(x\ge0;x\ne9\)
\(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(D=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right)\)
\(D=\left(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(D=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(D=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(D=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
a, ĐKXĐ: \(x\ge0;x\ne9\)
b, rút gọn
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x}{x-9}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}-3}-1\right)\)
\(=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\dfrac{\sqrt{x}+1}{x-3}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{x+1}\\ =\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\\ =\dfrac{-3}{\sqrt{x}+3}\)
c,Cho \(A\le-\dfrac{1}{3}\)
\(< =>\dfrac{3}{\sqrt{x}+3}\le-\dfrac{1}{3}\\ < =>\dfrac{-3}{\sqrt{x}+3}+\dfrac{1}{3}\le0\\ < =>\dfrac{-9+\sqrt{x}+3}{3\left(\sqrt{x}+3\right)}\le0\\ < =>\dfrac{\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\le0\\ < =>\sqrt{x}-6\le0\\ < =>\sqrt{x}\le36\\ < =>0\le x\le36\)
Vậy để \(A\le-\dfrac{1}{3}\) thì \(0\le x\le36\)và\(x\ne9\)
d, \(A=\dfrac{-3}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}+3\ge3\\ =>\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\\ =>\dfrac{-3}{\sqrt{x}+3}\ge\dfrac{-3}{3}\\ =-1\)
Vậy GTNN của A=-1
Xấu ''='' xảy ra khi \(\sqrt{x}=0\\ \Leftrightarrow x=0\)
a) Ta có:
\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)
b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)
.....Chưa nghĩ ra....
c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)
Vậy Min P = 0 khi x =9.
k - kb với tớ nhia mn!
a) Để biểu thức P xác định thì \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)
Vậy ĐKXĐ:x\(\ge0\),x\(\ne9\)
\(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}=\left[\dfrac{2x-6\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{\left(-3\sqrt{x}-3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}=\dfrac{-3}{\sqrt{x}+3}\)
b) Ta có \(P< \dfrac{1}{2}\Leftrightarrow\dfrac{-3}{\sqrt{x}+3}< \dfrac{1}{2}\Leftrightarrow-6< \sqrt{x}+3\Leftrightarrow\sqrt{x}>-9\)
Vì \(\sqrt{x}\ge0\) và 0>-9
Vậy \(x\ge0\)
Kết hợp với ĐKXĐ, Vậy \(x\ge0\) và \(x\ne9\) thì P<\(\dfrac{1}{2}\)
a)\(ĐK:x\ne9,x\ge0\)
\(D=\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{1}{\sqrt{x}+3}\right)\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+3+1\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)
\(=\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
a) ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\x>0\end{matrix}\right.\)
b)
\(D=\left(\dfrac{2x+1}{\sqrt{x^3}-1}-\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\right)\left(\dfrac{1+\sqrt{x^3}}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left(\dfrac{2x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\right)\left(\dfrac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\dfrac{2x+1-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(1-\sqrt{x}+x-\sqrt{x}\right)\)
\(=\dfrac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)^2\)
\(=\sqrt{x}-1\)
c)
Giả sử \(D>\dfrac{-2}{\sqrt{x}}\)
\(\Rightarrow\sqrt{x}-1>-\dfrac{2}{\sqrt{x}}\Leftrightarrow\sqrt{x}-1+\dfrac{2}{\sqrt{x}}>0\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}-1\right)\sqrt{x}+2}{\sqrt{x}}>0\Leftrightarrow x-\sqrt{x}+2>0\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{7}{4}>0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)(luôn đúng)
a, đk;x>0;#1
\(A=\left(\dfrac{1}{x-\sqrt{x}}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}+1}\)
\(A=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).(\sqrt{x}+1)\)
\(A=-\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
b,\(x=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)thay vào sẽ ra kqua
c, vì A<0 nên vs x>0,#1 thì thoả mãn
d, P=\(A-9\sqrt{x}=-1-\dfrac{1}{\sqrt{x}}-9\sqrt{x}\le-1-6=-7\)(bđt cô si)
Lời giải:
ĐK: \(x\geq 0; x\neq 9\)
a)
Ta có:
\(D=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}+\frac{2\sqrt{x}(\sqrt{x}+3)}{(\sqrt{x}-3)(\sqrt{x}+3)}-\frac{3x+9}{(\sqrt{x}-3)(\sqrt{x}+3)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-(3x+9)}{(\sqrt{x}+3)(\sqrt{x}-3)}\)
\(=\frac{3\sqrt{x}-9}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{3(\sqrt{x}-3)}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{3}{\sqrt{x}+3}\)
b) Để \(D=\frac{1}{3}\Leftrightarrow \frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(\Rightarrow \sqrt{x}+3=9\Rightarrow \sqrt{x}=6\Rightarrow x=36\) (t/m)
c)
Vì \(\sqrt{x}\geq 0\Rightarrow \sqrt{x}+3\geq 3\)
Do đó: \(D=\frac{3}{\sqrt{x}+3}\leq \frac{3}{3}=1\)
Vậy $D_{\max}=1$ khi $x=0$