\(\sqrt{a^2+abc}+\sqrt{b^2+abc}+\sqrt{c^2+abc}+9.\sqrt{abc}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2020

Ta có: 

Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)

\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)

Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)

Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)

\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)

19 tháng 4 2020

a=b=c=1/3

11 tháng 2 2016

\(3\sqrt[3]{abc}\le a+b+c\Rightarrow abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\) (BĐT AM-GM)

\(\sqrt{a^2+abc}=\sqrt{a\left(a+bc\right)}=\frac{2}{3}\sqrt{\frac{9}{4}a\left(a+bc\right)}\le\frac{2}{3}\left(\frac{\frac{9}{4}a+a+bc}{2}\right)\) (BĐT AM-GM)

Tương tự: \(\Rightarrow\)\(A\le\frac{1}{3}\left(\frac{9}{4}\left(a+b+c\right)+a+b+c+ab+bc+ca\right)+9\sqrt{\frac{1}{27}}\)

mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)

=>giải được

11 tháng 2 2016

moi hok lop @ minh . com

20 tháng 2 2016

\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow\sqrt{a^2+abc}\ge\sqrt{a^2}=a\)

Tương tự:\(\sqrt{b^2+abc}\ge b,\sqrt{c^2+abc}\ge c\)

\(\Rightarrow A\ge a+b+c+0=1\)

Đẳng thức xảy ra \(\Leftrightarrow abc=0,a+b+c=1\)(bạn tự giải tiếp)

18 tháng 2 2019

0,3 0,4 ,0,5

11 tháng 10 2019

a b c la : nhau vay a 2 b 5 c 9

11 tháng 10 2019

dap an laf a 4  b 6c 14

10 tháng 7 2019

Bonking Akai Haruma

6 tháng 7 2019

a) Ta có BĐT:

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)ab\)

\(\Rightarrow a^3+b^3+abc\ge ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự cho 2 bất đẳng thức còn lại rồi cộng theo vế:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}=VP\)

Khi \(a=b=c\)

6 tháng 7 2019

cảm ơn ạ

13 tháng 3 2017

biến đổi ta đc \(P=\dfrac{\sqrt{c-1}}{c}+\dfrac{\sqrt{a-3}}{a}+\dfrac{\sqrt{b-2}}{b}\)

ta có \(c=c-1+1\ge2\sqrt{c-1}\)

=> \(\dfrac{\sqrt{c-1}}{c}\le\dfrac{1}{2}\)

tương tự ta có \(\dfrac{\sqrt{b-2}}{b}\le\dfrac{1}{2\sqrt{2}}\); \(\dfrac{\sqrt{a-3}}{a}\le\dfrac{1}{2\sqrt{3}}\)

=> P \(\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\)

dấu đẳng thức xảy ra khi c=2;b=4;a=6