Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bỏ x4 đi nhé bn
Theo t/c dãy tỉ số=nhau:
\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{x_1-1+x_2-2+x_3-3}{3+2+1}\)\(=\frac{\left(x_1+x_2+x_3\right)-\left(1+2+3\right)}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)
=>x1-1=4.3=12=>x1=13
x2-2=4.2=8=>x2=10
x3-3=4=>x3=7

Đặt \(\frac{x_1-1}{5}=\frac{x_2-2}{4}=\frac{x_3-3}{3}=\frac{x_4-4}{2}=\frac{x_5-5}{1}=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\frac{x_1+x_2+x_3+x_4+x_5-15}{15}=\frac{30-15}{15}=1\)
\(\frac{x_1-1}{5}=1\Rightarrow x_1=6;\frac{x_2-2}{4}=1\Rightarrow x_2=6;\frac{x_3-3}{3}=1\Rightarrow x_3=6;\frac{x_4-4}{2}=1\Rightarrow x_4=6;\frac{x^5-5}{2}=1\Rightarrow x_5=6\)
Vậy \(x_1=x_2=x_3=x_4=x_5=6\)

x1 / x2 = x3 / x4 => x1 + x3 / x2 + x4 => (x1 +x3)2 / (x2+x4)2 1
x1 / x2 = x3 / x4 => (x1/ x2)2 = (x3/x4)2 => x12 / x22 = x32 / x42
=> 2017x12 / 2017x22 = x32/ x42 => 2017x12+x32/2017x2+x42 2
Từ 1, 2 => 2017x12 +x32 / 2017x22 + x42 = (x1+x3)2 / (x2+x4)2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x_1-1}{5}=\dfrac{x_2-2}{4}=\dfrac{x_3-3}{3}=\dfrac{x_4-4}{2}=\dfrac{x_5-5}{1}\)
\(=\dfrac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)+\left(x_4-4\right)+\left(x_5-5\right)}{5+4+3+2+1}\)
\(=\dfrac{\left(x_1+x_2+x_3+x_4+x_5\right)-\left(1+2+3+4+5\right)}{15}\)
\(=\dfrac{30-15}{15}=1\)
\(\Rightarrow x_1=x_2=x_3=x_4=x_5=6\)
Vậy...
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x1-1}{5}\)=\(\dfrac{x2-2}{4}\)\(\dfrac{x3-3}{3}\)=\(\dfrac{x4-4}{2}\)=\(\dfrac{x5-5}{1}\)=\(\dfrac{x1-1+x2-2+x3-3+x4-4+x5-5}{5+4+3+2+1}\)=\(\dfrac{x1+x2+x3+x4+x5-\left(1+2+3+4+5\right)}{15}\)=\(\dfrac{30-15}{15}\)=\(\dfrac{15}{15}\)=1
\(\dfrac{x1-1}{5}\)=1 => x1-1=5 => x1 =6
\(\dfrac{x2-2}{4}\)=1 => x2-2=4 => x2 =6
\(\dfrac{x3-3}{3}\)=1 => x3-3=3 => x3 =6
\(\dfrac{x4-4}{2}\)=1 => x4-4=2 => x4 =6
\(\dfrac{x5-5}{1}\)=1 => x5-5=1 => x5 = 6
Vậy x1=x2=x3=x4=x5 =6

dễ mà bạn.ban chỉ cần ad tc dãy tỉ số bàng nhau là được
\(\frac{x1-1}{9}=...=\frac{x9-9}{1}=\frac{x1-1+...+x9-9}{9+...+1}\)sau đó thay x1+...+x9 vào la ok
loại ócc như mày ế ,làm như z mà dk à ,sai hết cmnr
(8x3+1):(2x+1)=((2x)3+1):(2x+1)=(2x+1)(4x2−2x+1):(2x+1)=4x2−2x+1
x2 + 3x + 6
(\(x^3\) + \(x^2\) - 12) : (\(x\) - 2)
= [(\(x^3-8)\) + (\(x^2\) - 4)] :(\(x-2\))
= [(\(x-2\))(\(x^2+2x+4)\) + \(\left(x-2\right)\left(x+2\right)\)] :(\(x-2\))
= (\(x-2\))(\(x^2+2x+4\) + \(x+2\)):(\(x-2\)
= (\(x-2):\left(x-2\right)\).[\(x^2\) + (2\(x\) + \(x\)) + (4 + 2)]
= 1.[\(x^2\) + 3\(x\) + 6]
= \(x^2+3x+6\)