
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.
a. Em tự giải
b.
\(\left\{{}\begin{matrix}2x+y=4m-1\\3x-2y=-m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x+2y=8m-2\\3x-2y=-m+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\y=\dfrac{3x+m-9}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=2m-3\end{matrix}\right.\)
Để \(x+y=7\Rightarrow m+1+2m-3=7\)
\(\Rightarrow3m=9\Rightarrow m=3\)
2.
a. Em tự giải
b.
Phương trình có 2 nghiệm khi:
\(\Delta'=\left(m+1\right)^2-\left(2m+10\right)=m^2-9\ge0\)
\(\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m+10\end{matrix}\right.\)
Ta có:
\(P=x_1^2+x_2^2+8x_1x_2=\left(x_1+x_2\right)^2+6x_1x_2\)
\(=4\left(m+1\right)^2+6\left(2m+10\right)=4m^2+20m+64\)
\(=4\left(m^2+5m+6\right)+40=4\left(m+2\right)\left(m+3\right)+40\)
Do \(\left[{}\begin{matrix}m\ge3\\m\le-3\end{matrix}\right.\) \(\Rightarrow\left(m+2\right)\left(m+3\right)\ge0\)
\(\Rightarrow P\ge40\)
Vậy \(P_{min}=40\) khi \(m=-3\)
(Nếu bài này giải là \(4m^2+20m+64=\left(2m+5\right)^2+39\ge39\) là sai vì dấu = khi đó xảy ra tại \(m=-\dfrac{5}{2}\) ko thỏa mãn điều kiện \(\Delta\) để pt có nghiệm)

Chắc câu c quá, tại tổng 2 ô vuông của hình chữ nhật có 10 chấm tròn. =)
Em nghĩ là câu c vì thấy tổng của các chấm tròn ở mỗi miếng đều là 10.

Đáp án b
Các hình màu xanh là phản chiếu của các hình máu cam trong gương.
Nhìn sơ sơ đoán là chọn B
Kiểu 2 hình ở gần (đáy hình cam trên và đỉnh hình xanh dưới sẽ giống nhau), 2 hình còn lại giống nhau tại vị trí đỉnh trên hình cam và đáy dưới hình xanh

a. Câu này đơn giản em tự giải
b.
Xét hai tam giác OIM và OHN có:
\(\left\{{}\begin{matrix}\widehat{OIM}=\widehat{OHN}=90^0\\\widehat{MON}\text{ chung}\\\end{matrix}\right.\) \(\Rightarrow\Delta OIM\sim\Delta OHN\left(g.g\right)\)
\(\Rightarrow\dfrac{OI}{OH}=\dfrac{OM}{ON}\Rightarrow OI.ON=OH.OM\)
Cũng từ 2 tam giác đồng dạng ta suy ra \(\widehat{OMI}=\widehat{ONH}\)
Tứ giác OAMI nội tiếp (I và A cùng nhìn OM dưới 1 góc vuông)
\(\Rightarrow\widehat{OAI}=\widehat{OMI}\)
\(\Rightarrow\widehat{OAI}=\widehat{ONH}\) hay \(\widehat{OAI}=\widehat{ONA}\)
c.
Xét hai tam giác OAI và ONA có:
\(\left\{{}\begin{matrix}\widehat{OAI}=\widehat{ONA}\left(cmt\right)\\\widehat{AON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OAI\sim\Delta ONA\left(g.g\right)\)
\(\Rightarrow\dfrac{OA}{ON}=\dfrac{OI}{OA}\Rightarrow OI.ON=OA^2=OC^2\) (do \(OA=OC=R\))
\(\Rightarrow\dfrac{OC}{ON}=\dfrac{OI}{OC}\)
Xét hai tam giác OCN và OIC có:
\(\left\{{}\begin{matrix}\dfrac{OC}{ON}=\dfrac{OI}{OC}\\\widehat{CON}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OCN\sim\Delta OIC\left(g.g\right)\)
\(\Rightarrow\widehat{OCN}=\widehat{OIC}=90^0\) hay tam giác ACN vuông tại C
\(\widehat{ABC}\) là góc nt chắn nửa đường tròn \(\Rightarrow BC\perp AB\)
Áp dụng hệ thức lượng trong tam giác vuông ACN với đường cao BC:
\(BC^2=BN.BA=BN.2BH=2BN.BH\) (1)
O là trung điểm AC, H là trung điểm AB \(\Rightarrow OH\) là đường trung bình tam giác ABC
\(\Rightarrow OH=\dfrac{1}{2}BC\)
Xét hai tam giác OHN và EBC có:
\(\left\{{}\begin{matrix}\widehat{OHN}=\widehat{EBC}=90^0\\\widehat{ONH}=\widehat{ECB}\left(\text{cùng phụ }\widehat{IEB}\right)\end{matrix}\right.\) \(\Rightarrow\Delta OHN\sim\Delta EBC\left(g.g\right)\)
\(\Rightarrow\dfrac{OH}{EB}=\dfrac{HN}{BC}\Rightarrow HN.EB=OH.BC=\dfrac{1}{2}BC^2\)
\(\Rightarrow BC^2=2HN.EB\) (2)
(1);(2) \(\Rightarrow BN.BH=HN.BE\)
\(\Rightarrow BN.BH=\left(BN+BH\right).BE\)
\(\Rightarrow\dfrac{1}{BE}=\dfrac{BN+BH}{BN.BH}=\dfrac{1}{BH}+\dfrac{1}{BN}\) (đpcm)

4c.
Do M là giao điểm 2 tiếp tuyến tại A và B, theo tính chất hai tiếp tuyến cắt nhau
\(\Rightarrow\widehat{OMN}=\widehat{OMB}\)
Mà \(MB||NO\) (cùng vuông góc BC) \(\Rightarrow\widehat{OMB}=\widehat{MON}\) (so le trong)
\(\Rightarrow\widehat{OMN}=\widehat{MON}\)
\(\Rightarrow\Delta OMN\) cân tại N
\(\Rightarrow MN=ON\)
Cũng theo 2 t/c 2 tiếp tuyến cắt nhau \(\Rightarrow MA=MB\)
Do MD là tiếp tuyến của (O) tại A \(\Rightarrow OA\perp MD\)
Áp dụng hệ thức lượng trong tam giác vuông OND với đường cao OA:
\(ON^2=NA.ND\Rightarrow MN^2=NA.ND\)
\(\Rightarrow MN^2=\left(MA-MN\right).ND=\left(MB-MN\right).ND\)
\(\Rightarrow MN^2=MB.ND-MN.ND\)
\(\Rightarrow MB.ND-MN^2=MN.ND\)
\(\Rightarrow\dfrac{MB.ND-MN^2}{MN.ND}=1\)
\(\Rightarrow\dfrac{MB}{MN}-\dfrac{MN}{ND}=1\) (đpcm)

bài 4: gọi x; y (km/h) lần lượt là vận tốc ban đầu của xe đi từ A và xe đi từ B (x, y >0)
*trường hợp 1:
Quãng đường xe đi từ A đến lúc gặp: 7,5x (km)
quãng đường xe đi từ B đến lúc gặp: 7,5y(km)
vì 2 xe đi ngược chiều và gặp nhau sau 7g30p nên ta có:
\(\left(x+Y\right)\cdot7,5=525\Rightarrow x+y=70\left(1\right)\)
*trường hợp 2
Vận tốc của xe A khi tăng gấp đôi ngay từ đầu là: 2x (km/h)
Quãng đường xe đi từ A đến lúc gặp: \(2x\cdot5,25\left(\operatorname{km}\right)\)
quãng đường xe đi từ B đến lúc gặp: 5,25y (km)
vì 2 xe gặp nhau sau 5 giờ 15 phút nên ta có:
\(\left(2x+y\right)\cdot5,25=525\Rightarrow2x+y=100\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\begin{cases}x+y=70\\ 2x+y=100\end{cases}\Rightarrow\begin{cases}x=30\\ y=40\end{cases}\left(TM\right)\)
vậy vận tốc ban đầu của xe đi từ A và xe đi từ B lần lượt là 30km/h và 40km/h
bài 5: gọi x, y, z (m vuông) lần lượt là diện tích lô 1, lô 2 và lô 3 (x,y,z > 0)
lô 1 gấp 3/2 lần tổng diện tích 2 lô còn lại nên:
\(x=\frac32\cdot\left(y+z\right)\)
lô 3 lớn hơn lô 2 200m² nên ta có:
\(y+200=z\)
mà khu đất đó có diện tích là 2000m² nên:
\(\frac32\cdot\left(y+z\right)+y+z=2000\)
\(\Rightarrow\frac52\cdot\left(y+z\right)=2000\)
\(\Rightarrow y+z=800\)
Mà z = y + 200 nên
\(y+y+200=800\Rightarrow2y=600\Rightarrow y=300\) (TM)
⇒ z = 300 + 200 = 500 (TM)
⇒ x = \(\frac32\cdot\left(500+300\right)=1200\) (TM)
Vậy diện tích lô 1, lô 2, lô 3 lần lượt là 1200m², 300m², 500m²

a: ĐKXĐ: x>=-4
\(x^2+3x+24=12\sqrt{x+4}\)
=>\(x\left(x+3\right)-12\sqrt{x+4}+24=0\)
=>\(x\left(x+3\right)-12\left(\sqrt{x+4}-2\right)=0\)
=>\(x\left(x+3\right)-12\cdot\frac{x+4-4}{\sqrt{x+4}+2}=0\)
=>\(x\left(x+3\right)-\frac{12x}{\sqrt{x+4}+2}=0\)
=>\(x\left(x+3-\frac{12}{\sqrt{x+4}+2}\right)=0\)
=>\(x\left\lbrack x+\frac{3\sqrt{x+4}+6-12}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\left\lbrack x+\frac{3\sqrt{x+4}-6}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\cdot\left\lbrack x+\frac{3\left(\sqrt{x+4}-2\right)}{\sqrt{x+4}+2}\right\rbrack=0\)
=>\(x\cdot\left\lbrack x+3\cdot\frac{x+4-4}{\left(\sqrt{x+4}+2\right)\left(\sqrt{x+4}+2\right)}\right\rbrack=0\)
=>\(x^2\left(1+\frac{3}{\left(\sqrt{x+4}+2\right)^2}\right)=0\)
=>\(x^2=0\)
=>x=0(nhận)
b:
ĐKXĐ: x>=-5/2
\(x^2+\sqrt{2x+5}=2x+3+\sqrt{x^2+2}\)
=>\(x^2-2x-3=\sqrt{x^2+2}-\sqrt{2x+5}\)
=>\(\left(x-3\right)\left(x+1\right)=\frac{x^2+2-2x-5}{\sqrt{x^2+2}+\sqrt{2x+5}}\)
=>\(\left(x-3\right)\left(x+1\right)\left(1-\frac{1}{\sqrt{x^2+2}+\sqrt{2x+5}}\right)=0\)
=>(x-3)(x+1)=0
=>\(\left[\begin{array}{l}x=3\left(nhận\right)\\ x=-1\left(nhận\right)\end{array}\right.\)

a: \(\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Rightarrow\begin{cases}6x-4y=14\\ -6x+4y=-9\end{cases}\)
=>\(\begin{cases}6x-4y-6x+4y=14-9=5\\ 3x-2y=7\end{cases}\Rightarrow\begin{cases}0y=5\\ 3x-2y=7\end{cases}\)
=>Hệ vô nghiệm
b: \(\begin{cases}2x+4y=9\\ -3x-6y=-27\end{cases}\Rightarrow\begin{cases}6x+8y=18\\ -6x-12y=-54\end{cases}\)
=>\(\begin{cases}6x+8y-6x-12y=18-54=-36\\ 2x+4y=9\end{cases}\Rightarrow\begin{cases}-4y=-36\\ 2x=9-4y\end{cases}\)
=>\(\begin{cases}y=9\\ 2x=9-4\cdot9=9-36=-27\end{cases}\Rightarrow\begin{cases}y=9\\ x=-\frac{27}{2}\end{cases}\)
c: \(\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Rightarrow\begin{cases}10x+2y=6\\ 4x-2y=9\end{cases}\)
=>\(\begin{cases}10x+2y+4x-2y=6+9\\ 5x+y=3\end{cases}\Rightarrow\begin{cases}14x=15\\ y=3-5x\end{cases}\Rightarrow\begin{cases}x=\frac{15}{14}\\ y=3-5\cdot\frac{15}{14}=3-\frac{75}{14}=\frac{42}{14}-\frac{75}{14}=\frac{-33}{14}\end{cases}\)
d: \(\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Rightarrow\begin{cases}4x-6y=-10\\ -4x+6y=10\end{cases}\)
=>\(\begin{cases}4x-6y-4x+6y=-10+10=0\\ 2x-3y=-5\end{cases}\Rightarrow\begin{cases}0y=0\\ 2x=3y-5\end{cases}\)
=>\(\begin{cases}y\in R\\ x=\frac{3y-5}{2}\end{cases}\)
\(a.\begin{cases}3x-2y=7\\ -6x+4y=-9\end{cases}\Leftrightarrow\begin{cases}6x-4y=7\left(1\right)\\ -6x+4y=-9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = -2
vậy phương trình trên vô nghiệm
\(b.\begin{cases}2x-4y=9\\ -3x-6y=-27\end{cases}\Leftrightarrow\begin{cases}6x-12y=27\left(1\right)\\ -6x-12y=-54\left(2\right)\end{cases}\)
lấy (1) - (2) ta được:
12x = 81
⇒ x = 81 : 12 = 6,75
thay x = 6,75 vào (1) ta được:
\(6\cdot6,75-12y=27\)
40,5 - 12y = 27
12y = 40,5 - 27
12y = 13,5
y = 13,5 : 12 = 1,125
kết luận: (x; y) = (6,75; 1,125)
\(c.\begin{cases}5x+y=3\\ 4x-2y=9\end{cases}\Leftrightarrow\begin{cases}10x+2y=6\left(1\right)\\ 4x-2y=9\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
14x = 15
x = 15 : 14 = \(\frac{15}{14}\) (3)
thay (3) vào (1) ta được:
\(10\cdot\frac{15}{14}+2y=6\)
\(\frac{75}{7}+2y=6\)
\(2y=6-\frac{75}{7}\)
\(2y=-\frac{33}{7}\)
\(y=-\frac{33}{7}:2=-\frac{33}{7}\cdot\frac12=-\frac{33}{14}\)
kết luận: \(\left(x;y\right)=\left(\frac{15}{14};-\frac{33}{14}\right)\)
\(d.\begin{cases}2x-3y=-5\\ -4x+6y=10\end{cases}\Leftrightarrow\begin{cases}4x-6y=-10\left(1\right)\\ -4x+6y=10\left(2\right)\end{cases}\)
lấy (1) + (2) ta được:
0x + 0y = 0
vậy hệ có vô số nghiệm
1: \(A=\sqrt{\dfrac{2}{3}}-\sqrt{24}+2\cdot\sqrt{\dfrac{3}{8}}+\sqrt{\dfrac{1}{6}}\)
\(=\sqrt{\dfrac{6}{9}}-2\sqrt{6}+2\cdot\sqrt{\dfrac{6}{16}}+\sqrt{\dfrac{6}{36}}\)
\(=\dfrac{1}{3}\sqrt{6}-2\sqrt{6}+\dfrac{1}{2}\sqrt{6}+\dfrac{1}{6}\sqrt{6}\)
\(=-\sqrt{6}\)
2: \(A=\sqrt{150}+\sqrt{96}+\dfrac{9}{2}\cdot\sqrt{2\dfrac{2}{3}}-\sqrt{6}\)
\(=5\sqrt{6}+4\sqrt{6}+\dfrac{9}{2}\cdot\sqrt{\dfrac{8}{3}}-\sqrt{6}\)
\(=8\sqrt{6}+\dfrac{9}{2}\cdot\dfrac{2\sqrt{2}}{\sqrt{3}}\)
\(=8\sqrt{6}+3\sqrt{3}\cdot\sqrt{2}=11\sqrt{6}\)
3: \(A=2\sqrt{45}+\sqrt{32}-2\sqrt{20}-\dfrac{9}{2}\cdot\sqrt{8}\)
\(=2\cdot3\sqrt{5}+4\sqrt{2}-2\cdot2\sqrt{5}-\dfrac{9}{2}\cdot2\sqrt{2}\)
\(=6\sqrt{5}-4\sqrt{5}+4\sqrt{2}-9\sqrt{2}\)
\(=2\sqrt{5}-5\sqrt{2}\)
4: \(A=\sqrt{75}-\dfrac{1}{2}\cdot\sqrt{48}+\sqrt{300}-\sqrt{147}\)
\(=5\sqrt{3}-\dfrac{1}{2}\cdot4\sqrt{3}+10\sqrt{3}-7\sqrt{3}\)
\(=8\sqrt{3}-2\sqrt{3}=6\sqrt{3}\)
5: \(A=\sqrt{54}+2\sqrt{24}-\dfrac{3}{2}\cdot\sqrt{96}-\sqrt{216}\)
\(=3\sqrt{6}+2\cdot2\sqrt{6}-6\sqrt{6}-\dfrac{3}{2}\cdot4\sqrt{6}\)
\(=-3\sqrt{6}+4\sqrt{6}-6\sqrt{6}\)
\(=-5\sqrt{6}\)
6: \(A=3\sqrt{50}-2\sqrt{75}-4\cdot\dfrac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\dfrac{1}{3}}\)
\(=3\cdot5\sqrt{2}-2\cdot5\sqrt{3}-4\cdot\sqrt{18}-\sqrt{3}\)
\(=15\sqrt{2}-10\sqrt{3}-12\sqrt{2}-\sqrt{3}\)
\(=3\sqrt{2}-11\sqrt{3}\)