Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
\(M=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=\left(2x-3y-1+2x\right)\left(2x-3y+1-2x\right)-9y^2+4+12xy-4x\)
\(=\left(4x-3y-1\right)\left(1-3y\right)-9y^2+4+12xy-4x\)
\(=4x-12xy-3y+9y^2-1+3y-9y^2+4+12xy-4x=3\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Bài 2 :
a, \(\left(a-3b\right)^2=a^2-6ab+9b^2\)
b, \(x^2-16y^4=\left(x-4y^2\right)\left(x+4y^2\right)\)
c, \(25a^2-\frac{1}{4}b^2=\left(5a-\frac{1}{2}b\right)\left(5a+\frac{1}{2}b\right)\)
Bài 3 :
a, \(9x^2-6x+1=\left(3x-1\right)^2\)
b, \(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
c, \(4\left(2x-y\right)^2-8x+4y+1=\left(4x-2y\right)^2-2\left(4x-2y\right)+1=\left(4x-2y-1\right)^2\)
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
Ta có :
\(S_{ABC}=\frac{1}{2}.AH.BC=\frac{10.6}{2}=30\)( đvdt )
\(S_{ABC}=\frac{1}{2}\cdot AH\cdot BC=\frac{1}{2}\cdot6\cdot10=30\)
Answer:
Bài 1:
\(6x^2-3xy=3x.2x-3x.y=3x.\left(2x-y\right)\)
\(x^2-y^2-6x+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-3-y\right).\left(x-3+y\right)\)
\(x^2+5x=x.\left(x+5\right)\)
Bài 2:
\(\left(x+2\right)^2-\left(x-3\right).\left(x+1\right)\)
\(=x^2+4x+4-x^2+2x+3\)
\(=x^2-x^2+4x+2x+4+3\)
\(=6x+7\)
\(\left(x^2-2x^2+5x-10\right):\left(x-2\right)\)
\(=[x^2.\left(x-2\right)+5.\left(x-2\right)]:\left(x-2\right)\)
\(=\left(x^2+5\right).\left(x-2\right):\left(x-2\right)\)
\(=x^2+5\)
Bài 3:
a) Ta có:
\(x^2-3x=0\Rightarrow x.\left(x-3\right)=0\)
Mà đề ra: ĐKXĐ: \(x\ne0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
Ta thay vào biểu thức A được
\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)
b) \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)
\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x.\left(x-5\right)}\)
\(=\frac{\left(x+5\right).\left(x-5\right)}{2x.\left(x-5\right)}+\frac{\left(x-6\right).2x}{2x.\left(x-5\right)}-\frac{2x^2-2x-50}{2x.\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x.\left(x-5\right)}\)
\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x.\left(x-5\right)}\)
\(=\frac{x^2-10x+25}{2x.\left(x-5\right)}\)
\(=\frac{x^2-2x.5+5^2}{2x.\left(x-5\right)}\)
\(=\frac{x-5}{2x}\)
c) Ta xét: \(P=A:B=\frac{x-5}{x-4}:\frac{x-5}{2x}=\frac{x-5}{x-4}.\frac{2x}{x-5}=2+\frac{8}{x-4}\)
Mà để \(P\inℤ\Rightarrow8⋮x-4\)
\(\Rightarrow x-4\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow x\in\left\{-4;0;2;3;5;6;8;12\right\}\)
Mà điều kiện đề bài ra: \(x\ne0;x\ne4;x\ne5\)
\(\Rightarrow x\in\left\{-4;2;3;6;8;12\right\}\)