![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5*:
\(E\inℤ\Rightarrow2E=\frac{2x+2}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Leftrightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
Bài 1:
\(A=\frac{x+15}{x-2}=\frac{x-2+17}{x-2}=1+\frac{17}{x-2}\inℤ\Leftrightarrow\frac{17}{x-2}\inℤ\)
mà \(x\)là số nguyên nên \(x-2\inƯ\left(17\right)=\left\{-17,-1,1,17\right\}\)
\(\Leftrightarrow x\in\left\{-15,1,3,19\right\}\).
Bài 2, 3, 4: Tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách lm thì bn tự lm nhé, mik cho đáp án tham khảo nè!!!
1) \(\dfrac{30}{77}\)
2) \(\dfrac{1}{10}\)
3) 560
Mik ko chắc là đúng 100% đâu nhé!!!
Chúc bn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
a) Xét tam giác \(ABD\)và tam giác \(AHD\)có:
\(AH=AB\)(giả thiết)
\(\widehat{BAD}=\widehat{HAD}\)(vì \(AD\)là tia phân giác của góc \(BAH\))
\(AH\)cạnh chung
Suy ra \(\Delta ABD=\Delta AHD\left(c.g.c\right)\)
b) \(\Delta ABD=\Delta AHD\Rightarrow\widehat{AHD}=\widehat{ABD}=90^o\)
do đó \(DH\)vuông góc với \(AC\).
Bài 6:
Xét tam giác \(OAD\)và tam giác \(OBD\)có:
\(OA=OB\)(giả thiết)
\(\widehat{AOD}=\widehat{BOD}\)(vì \(OD\)là tia phân giác góc \(AOB\))
\(OD\)cạnh chung
Suy ra \(\Delta OAD=\Delta OBD\left(c.g.c\right)\)
\(\Rightarrow DA=DB\)(hai cạnh tương ứng)
\(\widehat{ODA}=\widehat{ODB}\)(hai góc tương ứng)
mà \(\widehat{ODA}+\widehat{ODB}=180^o\)(hai góc kề bù)
nên \(\widehat{ODA}=\widehat{ODB}=90^o\)
suy ra \(OD\)vuông góc với \(AB\).
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài làm 2:
Theo đề bài, ta có:
\(\dfrac{3x}{4}\)=\(\dfrac{y}{2}\)=\(\dfrac{3z}{5}\) biết y-z=15
=>\(\dfrac{3x}{4}\)=\(\dfrac{y}{2}\)=\(\dfrac{z}{\dfrac{5}{3}}\)
Áp dụng t/c dãy tỉ số = nhau, ta có:
\(\dfrac{3x}{4}\)=\(\dfrac{y}{2}\)=\(\dfrac{\dfrac{z}{5}}{3}\)=\(\dfrac{y-z}{2-\dfrac{5}{3}}\)=\(\dfrac{15}{\dfrac{1}{3}}\)=45
=>3x=180=>x=60
y=90
z=75
x+y+z=60+90+75=225
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 5 : Gọi số táo ; cam và nho lần lượt là a ; b ; c ( quả ) ( a , b , c ∈ N* ) và lần lượt tỉ lệ với 4 ; 7 ; 9
Theo bài ra , ta có :
5a - b - c = 16
a\(\dfrac{a}{4}=\dfrac{b}{7}=\dfrac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{7}=\frac{c}{9}=\frac{5a}{20}=\frac{5a-b-c}{20-7-9}=\frac{16}{4}\)= 4
=> a= 4.4=16
b= 4.7= 28
c=4.9=36
![](https://rs.olm.vn/images/avt/0.png?1311)