Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác APMQ có \(\hat{APM}=\hat{AQM}=\hat{PAQ}=90^0\)
nên APMQ là hình chữ nhật

Bài 9:
Nửa chu vi mảnh đất là 34:2=17(m)
Gọi chiều rộng mảnh đất là x(m)
(ĐIều kiện: 0<x<17/2)
Chiều dài mảnh đất là 17-x(m)
Chiều rộng mảnh đất sau khi thêm 2m là x+2(m)
Chiều dài mảnh đất sau khi thêm 3m là 17-x+3=20-x(m)
Diện tích tăng thêm \(45m^2\) nên ta có:
\(\left(x+2\right)\left(20-x\right)-x\left(17-x\right)=45\)
=>\(20x-x^2+40-2x-17x+x^2=45\)
=>x+40=45
=>x=5(nhận)
vậy: Chiều rộng là 5m
Chiều dài là 17-5=12m
Bài 8:
Gọi thời gian ô tô đi trên đoạn đường AB là x(giờ)
(Điều kiện: x>0)
Thời gian ô tô đi trên đoạn đường BC là x+0,5(giờ)
Độ dài quãng đường AB là 50x(km)
Độ dài quãng đường BC là 45(x+0,5)(km)
Tổng độ dài hai quãng đường là 165km nên ta có:
50x+45(x+0,5)=165
=>50x+45x+22,5=165
=>95x=142,5
=>x=1,5(nhận)
vậy: thời gian ô tô đi trên đoạn đường AB là 1,5(giờ)
thời gian ô tô đi trên đoạn đường BC là 1,5+0,5=2(giờ)

a: Xét ΔCAD vuông tại A và ΔCED vuông tại E có
CD chung
\(\hat{ACD}=\hat{ECD}\)
Do đó: ΔCAD=ΔCED
=>CA=CE
b: ΔCAD=ΔCED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
AF=BE
Do đó: ΔDAF=ΔDEB
=>\(\hat{ADF}=\hat{EDB}\)
mà \(\hat{EDB}+\hat{ADE}=180^0\) (hai góc kề bù)
nên \(\hat{ADF}+\hat{ADE}=180^0\)
=>F,D,E thẳng hàng
c: AM là phân giác của góc BAC
=>\(\hat{BAM}=\hat{CAM}=\frac12\cdot\hat{BAC}=\frac{90^0}{2}=45^0\)
Xét tứ giác NMBA có \(\hat{NMB}+\hat{NAB}=90^0+90^0=180^0\)
nên NMBA là tứ giác nội tiếp
=>\(\hat{MNB}=\hat{MAB}=45^0\)
Xét ΔMNB vuông tại M có \(\hat{MNB}=45^0\)
nên ΔMNB vuông cân tại M
=>MN=MB

1: \(\frac{1-a\cdot\sqrt{a}}{1-\sqrt{a}}=\frac{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)^{}}{1-\sqrt{a}}=1+\sqrt{a}+a\)
2: \(\frac{\sqrt{x+3}+\sqrt{x-3}}{\sqrt{x+3}-\sqrt{x-3}}=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}{\left(\sqrt{x+3}-\sqrt{x-3}\right)\left(\sqrt{x+3}+\sqrt{x-3}\right)}\)
\(=\frac{\left(\sqrt{x+3}+\sqrt{x-3}\right)^2}{x+3-\left(x-3\right)}=\frac{x+3+x-3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{6}\)
\(=\frac{2x+2\sqrt{x^2-9}}{6}=\frac{x+\sqrt{x^2-9}}{3}\)
4: \(\frac{3}{2\sqrt{9x}}=\frac{3}{2\cdot3\sqrt{x}}=\frac{1}{2\sqrt{x}}=\frac{\sqrt{x}}{2}\)
5: \(\frac{1}{2\sqrt{x}}=\frac{1\cdot\sqrt{x}}{2\sqrt{x}\cdot\sqrt{x}}=\frac{\sqrt{x}}{2x}\)
7: \(\frac{\sqrt{a^3}+a}{\sqrt{a}-1}=\frac{a\cdot\sqrt{a}+a}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)}{\sqrt{a}-1}=\frac{a\left(\sqrt{a}+1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)
\(=\frac{a\left(a+2\sqrt{a}+1\right)}{a-1}=\frac{a^2+2a\cdot\sqrt{a}+a}{a-1}\)
8: \(\frac{2}{\sqrt{a}+\sqrt{2b}}=\frac{2\cdot\left(\sqrt{a}-\sqrt{2b}\right)}{\left(\sqrt{a}+\sqrt{2b}\right)\left(\sqrt{a}-\sqrt{2b}\right)}=\frac{2\sqrt{a}-2\sqrt{2b}}{a-2b}\)
10: \(\frac{25}{\sqrt{a}-\sqrt{b}}=\frac{25\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{25\sqrt{a}+25\sqrt{b}}{a-b}\)
11: \(-\frac{ab}{\sqrt{a}-\sqrt{b}}=-\frac{ab\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{-ab\cdot\sqrt{a}-ab\cdot\sqrt{b}}{a-b}\)

Bài 13:
a: \(\left\lbrack5\left(x-2y\right)^3\right\rbrack:\left(5x-10y\right)\)
\(=\frac{5\left(x-2y\right)^3}{5\cdot\left(x-2y\right)}\)
\(=\left(x-2y\right)^2\)
b: \(\left\lbrack5\left(a-b\right)^3+2\left(a-b\right)^2\right\rbrack:\left(b-a\right)^2\)
\(=\frac{5\left(a-b\right)^3+2\left(a-b\right)^2}{\left(a-b\right)^2}\)
\(=\frac{5\left(a-b\right)^3}{\left(a-b\right)^2}+\frac{2\left(a-b\right)^2}{\left(a-b\right)^2}\)
=5(a-b)+2
c: Sửa đề: \(\left(x^3+8y^3\right):\left(x+2y\right)\)
\(=\frac{\left(x+2y\right)\left(x^2-2xy+4y^2\right)}{x+2y}\)
\(=x^2-2xy+4y^2\)
Bài 11:
a: Gọi ba số tự nhiên liên tiếp lần lượt là a;a+1;a+2
Tích của hai số sau lớn hơn tích của hai số đầu là 52 nên ta có:
\(\left(a+1\right)\left(a+2\right)-a\left(a+1\right)=52\)
=>\(\left(a+1\right)\left(a+2-a\right)=52\)
=>2(a+1)=52
=>a+1=26
=>a=25
Vậy: ba số tự nhiên liên tiếp cần tìm là 25;25+1=26; 25+2=27
b: a chia 5 dư 1 nên a=5x+1
b chia 5 dư 4 nên b=5y+4
ab+1
\(=\left(5x+1\right)\left(5y+4\right)+1\)
=25xy+20x+5y+4+1
=25xy+20x+5y+5
=5(5xy+4x+y+1)⋮5
c: \(Q=2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
=6n⋮6
Bài 8:
a: \(A=x^2+2xy-3x^3+2y^3+3x^3-y^3\)
\(=x^2+2xy-3x^3+3x^3+2y^3-y^3\)
\(=x^2+2xy+y^3\)
Khi x=5;y=4 thì \(A=5^2+2\cdot5\cdot4+4^3=25+40+64=129\)
b: x=-1;y=-1
=>xy=1
\(x^2y^2=\left(xy\right)^2=1^2=1;x^4y^4=\left(xy\right)^4=1^4=1\) ; \(x^6y^6=\left(xy\right)^6=1^6=1;x^8y^8=\left(xy\right)^8=1^8=1\)
=>B=1-1+1-1+1=1

a: Xét ΔKAD và ΔBDA có
\(\hat{KAD}=\hat{BDA}\) (hai góc so le trong, AK//BD)
AD chung
\(\hat{KDA}=\hat{BAD}\) (hai góc so le trong, AB//CD)
Do đó: ΔKAD=ΔBDA
=>KA=BD
mà BD=AC
nên AK=AC
=>ΔAKC cân tại A
b: ΔAKC cân tại A
=>\(\hat{AKC}=\hat{ACK}\)
mà \(\hat{AKC}=\hat{BDC}\) (hai góc đồng vị, BD//AK)
nên \(\hat{BDC}=\hat{ACD}\)
Xét ΔBDC va ΔACD có
BD=AC
\(\hat{BDC}=\hat{ACD}\)
CD chung
Do đó: ΔBDC=ΔACD
=>\(\hat{BCD}=\hat{ADC}\)
=>ABCD là hình thang cân

10) đkxđ: \(x\ne\pm3\)
\(\frac{7}{a^2-9}+\frac{5}{a-3}+\frac{1}{a+3}=\frac{7}{\left(a-3\right)\left(a+3\right)}+\frac{5\cdot\left(a+3\right)}{\left(a+3\right)\left(a-3\right)}+\frac{a-3}{\left(a+3\right)\left(a-3\right)}\)
\(=\frac{7+5a+15+a-3}{\left(a+3\right)\left(a-3\right)}=\frac{6a+19}{\left(a+3\right)\left(a-3\right)}\)
11) đkxđ: \(x\ne-1\)
\(\frac{2x-1}{x^3+1}+\frac{2x}{x^2-x+1}-\frac{x}{x+1}+2\)
\(=\frac{2x-1}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2x\cdot\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x\cdot\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{2\left(x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\) \(=\frac{2x-1+2x^2+2x-x^3+x^2-x+2x^3+2}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{x^3+3x^2+3x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^3}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-x+1}\)
13) đkxđ: \(x\ne\pm\frac32\)
\(\frac{5}{2x-3}+\frac{2}{2x+3}-\frac{2x+5}{9-4x^2}\)
\(=\frac{5\cdot\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2\cdot\left(2x-3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{10x+15+4x-6+2x+5}{\left(2x-3\right)\left(2x+3\right)}\)
\(=\frac{16x+14}{\left(2x-3\right)\left(2x+3\right)}\)
1B:
a: \(x^2+2xy+x+2y\)
=x(x+2y)+(x+2y)
=(x+2y)(x+1)
b: \(2xy+yz+2x+z\)
=y(2x+z)+(2x+z)
=(2x+z)(y+1)
c: \(y^2-2y-z^2-2z\)
\(=\left(y^2-z^2\right)-2\left(y+z\right)\)
=(y+z)(y-z)-2(y+z)
=(y+z)(y-z-2)
d: \(x^3-x-y+y^3\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
2A:
a: \(x^2-2x+1-y^2\)
\(=\left(x-1\right)^2-y^2\)
=(x-1-y)(x-1+y)
b: \(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
=(x-y+2)(x+y-2)
c: \(y^2+6y-4z^2+9\)
\(=\left(y^2+6y+9\right)-\left(2z\right)^2\)
\(=\left(y+3\right)^2-\left(2z\right)^2=\left(y+3+2z\right)\left(y+3-2z\right)\)
d: \(x^2-y^2+10yz-25z^2\)
\(=x^2-\left(y^2-10yz+25z^2\right)\)
\(=x^2-\left(y-5z\right)^2=\left(x-y+5z\right)\left(x+y-5z\right)\)
2B:
a: \(4x^2-4x+1-25y^2\)
\(=\left(4x^2-4x+1\right)-\left(5y\right)^2\)
\(=\left(2x-1\right)^2-\left(5y\right)^2=\left(2x-1-5y\right)\left(2x-1+5y\right)\)
b: \(9y^2-z^2+6z-9\)
\(=\left(3y\right)^2-\left(z^2-6z+9\right)\)
\(=\left(3y\right)^2-\left(z-3\right)^2\)
=(3y-z+3)(3y+z-3)
c: \(x^2-4z^2+4x+4\)
\(=\left(x^2+4x+4\right)-\left(2z\right)^2\)
\(=\left(x+2\right)^2-\left(2z\right)^2\)
=(x+2+2z)(x+2-2z)
d: \(4x^2-y^2+4xz+z^2\)
\(=\left(4x^2+4xz+z^2\right)-y^2\)
\(=\left(2x+z\right)^2-y^2\)
=(2x+z-y)(2x+z+y)
3A:
a: \(x^2-2xy+y^2-a^2+2ab-b^2\)
\(=\left(x^2-2xy+y^2\right)-\left(a^2-2ab+b^2\right)\)
\(=\left(x-y\right)^2-\left(a-b\right)^2\)
=(x-y-a+b)(x-y+a-b)
c: \(x^3+y^3+3x^2-3xy+3y^2\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(x^2-xy+y^2\right)\)
\(=\left(x^2-xy+y^2\right)\left(x+y+3\right)\)