Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
Ta có : a song song với b
=> Góc A = Góc B = 90độ
Hay x = 90 độ
=> Góc D + Góc C = 180độ ( 2 góc trong cùng phía )
=> y + 130 độ = 180 độ
=> y = 50 độ
Vẽ Cx song song với Am(1), ta được :
=> Góc mAC + Góc ACx = 180 độ
=> Góc mAC + Góc BCA + Góc BCx = 180 độ
Hay Góc BCx = 180 độ - 45 độ - 60 độ = 75 độ
Vì Góc nBC + Góc BCx = 180 độ ( 75 độ + 105 độ = 180 độ )
Mà Góc nBC và Góc BCx là 2 góc trong cùng phía
Nên ta được Bn song song với Cx (2)
Từ (1) và (2) => Bn song song với Am
A B C E 1 2
Vẽ trên máy tính nên ko được đẹp lắm bạn thông cảm
Xét \(\Delta ABE\)có :
AB = AE = > \(\Delta ABE\)cân tại A
= > \(\widehat{B}=\widehat{AEB}\)
Xét \(\Delta ABD\)và \(\Delta AED\)có:
AB = AE ( gt )
\(\widehat{A_1}=\widehat{A_2}\left(gt\right)\)
\(\widehat{B}=\widehat{AEB}\left(cmt\right)\)
\(\Rightarrow\Delta ABD=\Delta AED\left(g.c.g\right)\)
b, Vì \(\Delta ABD=\Delta AED\)( câu a, )
= > BD = DE ( 2 cạnh tương ứng )
= > D là trung điểm của BE ( 1 )
\(\widehat{ADB}=\widehat{ADE}\)( 2 góc tương ứng )
Mà 2 góc này kề bù với nhau
= > \(\widehat{ADB}=\widehat{ADE}=\frac{180^0}{2}=90^0\)hay \(AD\perp BE\)( 2 )
Từ ( 1 ) và ( 2 ) = > AD là đường trung trực của BE
c, \(\widehat{ADB}=90^0\)
= > \(\widehat{A_2}+\widehat{AED}=90^0\)
hay \(\widehat{AED}\) phải là góc nhọn
Mà \(\widehat{AED}\)và \(\widehat{DEC}\)kề bù nhau
= > \(\widehat{AED}+\widehat{DEC}=180^0\)
\(\widehat{DEC}=180^0-\widehat{AED}\)
Mà \(\widehat{AED}\)là góc nhọn = > \(\widehat{DEC}\)là góc tù
Do \(\widehat{DEC}\)là góc tù nên cạnh đối diện với góc tù DC là cạnh lớn nhất
= > DC > DE
Mà DB = DE
= > DC > DB