Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg ABC có
\(\widehat{BAC}=180^o-\widehat{ABC}-\widehat{ACB}\) (tổng các góc trong của 1 tg \(=180^o\) )
\(\Rightarrow\widehat{BAC}=180^o-70^o-30^o=80^o=\widehat{ACD}\)
Hai góc \(\widehat{BAC}=\widehat{ACD}\) ở vị trí so le trong => AB//CD
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Chừ mình sẽ nối dài chiều dài của phần dưới của hình để được 2 HHCN.
Phần dưới có kích thước 24 x 6 x 5. Phần trên có kích thước là 8 x 6 x 11
a, Phần cần sơn là tổng diện tích toàn phần trừ đi 2 lần diện tích 8 x 6
Diện tích toàn phần HHCN trên:
2 x 8 x 6 + 2 x 11 x (8+6)= 404 (cm2)
Diện tích toàn phần HHCN dưới:
2 x 24 x 6 + 2 x 5 x (6+24)= 438(cm2)
Diện tích bề mặt khối gỗ cần sơn:
404 + 438 - 2 x 8 x 6= 746(cm2)
b, Thể tích phần trên khối gỗ:
8 x 6 x 11= 528(cm3)
Thể tích phần dưới khối gỗ:
24 x 6 x 5 = 720(cm3)
Thể tích của khối gỗ đã cho:
528 + 720 = 1248(cm3)
Em thấy bạn Vuông nói đúng
Để chứng minh điều này, ta có thể chỉ ra trường hợp 2 góc bằng nhau nhưng không đối đỉnh.
Ví dụ:
\(\widehat {{O_1}} = \widehat {{O_2}}\) nhưng hai góc này không đối đỉnh
a) Ta có:
∠ABD = ∠CDE = 60⁰ (gt)
Mà ∠ABD và ∠CDE là hai góc so le trong
⇒ AB // CD
b) Vẽ tia Am là tia đối của tia AB
Do AB // CD
⇒ ∠mAC = ∠ACD (so le trong)
Mà ∠mAC + ∠BAC = 180⁰ (kề bù)
⇒ ∠ACD + ∠BAC = 180⁰
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Gọi tiền lãi ba đơn vị nhận được lần lượt là: $a,b,c$ (triệu đồng)
Theo bài ra ta có: $\frac{a}{3}=\frac{b}{4}=\frac{c}{7}$ và $a+b+c=980$
Áp dụng TCDTSBN:
$\frac{a}{3}=\frac{b}{4}=\frac{c}{7}=\frac{a+b+c}{3+4+7}=\frac{980}{14}=70$
$\Rightarrow a=70.3=210$ (triệu đồng); $b=70.4=280$ (triệu đồng); $c=70.7=490$ (triệu đồng)